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A�������

Technological advances of the last centuries has given the western world a high
quality of life, a good health system and for most people a comfortable home to
live in. As a result, we live in a high-tech society, and this technology has to be
fueled by energy, where electricity is commonly used as a primary energy source.
Currently, a number of trends can be identi�ed in the electricity supply chain. Firstly,
the electricity demand is still increasing and will become more �uctuating due to
increasing prosperity and the electri�cation ofmany activities/devices, e.g. electrical
vehicles. Secondly, the stochastic behavior of the electricity demand and the lack of
�exibility on the demand side requires constant adjustment on the production side
of electricity, decreasing the e�ciency of power plants. �e increasing demand and
extra �uctuation will put more stress on the whole supply chain.

On the other side, society’s desire to reduce our environmental footprint requires
a reduction in CO�. �o achieve this, also changes are required in the electricity
supply chain. More distributed generation based on renewables or (bio-based) fossil
fueled generation with a higher e�ciency is desired. Unfortunately, these renewable
sources are o�en based on (partly) uncontrollable and very �uctuating sun-, water-
and wind power, requiring an introduction of �exibility in the grid elsewhere.

�ese trends result inmore renewable, distributed energy production and higher
peaks in the electricity demand. Consumers should become more active to exploit
their �exibility to cope for the in�exibility of renewable generation. Techniques
like controllable distributed generation, distributed storage, and smart appliances
can introduce the required �exibility in the grid. Smart appliances with more
intelligence can adjust their demand pro�le dependent on the current situation
in the grid, without any loss of comfort of the end-users. For example, freezers
and fridges may advance or postpone their cooling cycles to better match their
electricity demand to the production capacity available. Appliances like a washing
machine and/or dishwasher can postpone their start-time, but may also alter their
electricity consumption pattern by reducing the amount of power they consume
for heating the water.

To exploit the newly available �exibility in the grid and maintain a proper func-
tioning, a�ordable electricity supply, the grid has to become more intelligent. In
the more intelligent grids, called Smart Grids, production, transmission, distribu-
tion and consumption are continuously monitored, managed and coordinated to
maintain grid stability and reliability. �is requires that technical, economical and
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legislative challenges need to be tackled. It is generally agreed that ICT plays an
essential role within such Smart Grids to control the whole system.

In this thesis T�����, a the control methodology for the Smart Grid consisting
of forecasting, planning and real-time control is presented. �e goal of this energy
control methodology is to manage the energy pro�les of individual devices in
buildings to support the transition towards an energy supply chain which can
provide all the required energy in a sustainable way.

T����� has been developed at the University of Twente. �e focus of this thesis
is on the �rst two steps of the method. In the �rst step of T�����, the forecasting
step, the scheduling freedom (�exibility) of a device is determined. �is scheduling
freedom is dependent on the type of device, the device speci�c restrictions and the
environment of the device. For example, the scheduling freedom of the already
mentioned smart freezer is determined by the state of the freezer (based on the
current temperate and the allowed temperature range), the insulation quality of the
freezer, the number of freezing modes and the interactions with the residents, etc.
For each individual device a forecast is made, since device speci�c information and
restrictions need to be known in order to control the device.

Due to the enormous amount of devices in the grid, each with individual infor-
mation, restrictions and environment, forecasting is performed for each individual
device by a local controller present in the building. �is results in a scalable system,
since no information about the device and the environment needs to be communi-
cated and the required computational power required for forecasting is distributed.
By performing the forecasting locally, local building/resident speci�c characteristics
can be taken into account. �is can improve the prediction quality. Furthermore,
since the environment of a device may not be static due to the stochastic nature of
the residents, local information can be used to adapt to changes. By using locally
harvested data, a fully autonomous forecasting system without direct interaction
with the residents can be built. As an example of the forecasting system, the fore-
casting for a micro-Combined Heat and Power (CHP) appliance in combination
with a heat store is researched in more depth. �e freedom in using a micro-CHP
appliance is determined by the size of the heat store, the storage level of the bu�er
and the expected heat demand of the building. Here, local information like his-
torical heat demand and weather information are considered as good candidates
to be used as input data for the heat demand forecasting. Simulated annealing is
used to determine good forecast model parameters. Using the simulated annealing
algorithm, forecasts with a Mean Percentage Error of around ��� can be achieved.

In the second step of T�����, a planner tries to exploit the freedomof the devices
determined in the �rst step for his objective. �e objective of the planner could be to
reach a �at pro�le, or only to consume electricity at certain hours of the day. Using
this information, the planner generates a desired pro�le for a �eet of buildings by
generating a planning for each building/device individually. Planning is performed
by a hierarchical system consisting of a top planner, multiple levels with intermediate
grid planners and at the bottom of the structure the individual building controllers.
By subsequently dividing the overall planning problem into smaller subproblems
which are solved at lower levels, a scalable system is achieved. By aggregating
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information at each level in the structure, the amount of communication upwards
is reduced. Using steering signals, the building controllers generate a planning for
each device based on the cost functions of the devices, the steering signals and the
locally generated forecasts. By iteratively adjusting the steering signals, the pro�les
of the individual houses are reshaped to reach the global objective.

�ere are multiple ways to determine the steering signals and they can be
determined at multiple levels within the hierarchical structure. �e best results
are achieved by using di�erent steering signals for each building, determined by
the lowest grid planner. Since the schedules generated in the planning phase are
based on forecasts, and forecasts o�en are not perfect, deviations from the planning
can occur. In a replanning phase, a new planning can be generated, based on the
real situation and improved forecasts based on more recent information. Enabling
replanning shows a signi�cant improvement in reaching the desired objective.

�e third and �nal step of T����� is the real-time control step performed by the
local controller. Based on criteria set by the planning, the local controller controls
the devices to achieve this planning in the best possible way. �e real-time control
should be able to work around forecast errors, or if this is not possible, signal the
planner that the planning cannot be reached and a new planning, based on the
current situation, is required. Essential in this approach is that the comfort level of
the residents must be maintained.

In order to analyze the impact of the control methodologies introduced for the
smart grid, a simulator has been built. �e simulator is developed based on an
energy model. �e basic elements of the model are individual devices and between
devices energy streams (electricity, heat, gas etc)̇ are de�ned. Devices can consume,
bu�er, convert and exchange energy, resulting in four categories of devices. �e
energy streams are connected via so called pools, which represent the physical
connections between the devices. �ese pools are used to ensure the energy balance.
�e model has been implemented in the simulator and a controller based on cost
functions is used to control the devices. �e cost functions provide a generic and
�exible, but still powerful method to control current and future devices.

Furthermore, frameworks for con�guration of the model, the addition of sto-
chastic variations and tools for result analysis are provided. Since the model is
computationally intensive, the simulator can be organized in a distributed fashion
to allow simulations using multiple computers. �e underlying communication
framework for distributed simulation can also be used for distributed control of
di�erent controllers present in the smart grid. �e simulator evenly distributes
the load over the available computers involved in a simulation. �e simulation
speeds up linearly to the number of computers in the simulation, but the speed up
is limited by the slowest computer.

To study the e�ectiveness of the controlmethodology, to�nd the best parameters
of the control methodology and to study the most economic use of the �exibility
of devices, multiple scenarios have been simulated. �e simulations show that the
control methodology can optimize the energy �ows and can control the operation of
the domestic devices in an economic manner without discomfort for the residents.
Via T�����, di�erent objectives can be reached and the optimization potential can
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be exploited.
Based on the simulations we conclude that T����� is a control methodology

capable of monitoring and adjusting the energy pro�les and electricity streams. It
can autonomously determine the optimization potential of a large group of buildings
and exploit this potential to work towards global objectives. �e combination of
forecasting, planning and realtime control is a promising direction for control
methodologies for Smart Grids: it is scalable, generic and reliable.
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Technologische ontwikkelingen van de afgelopen eeuwen hebben dewesterse wereld
een goede kwaliteit van leven, een zorgstelsel en voor de meesten een comfortabel
plek om te wonen gebracht. Daardoor leven we in een ‘high-tech’ maatschappij
en deze technologie moet gevoed worden met energie, waarbij elektriciteit een
veelgebruikte energiebron is. In de huidige elektriciteitsvoorziening zijn een aantal
trends te herkennen.

Ten eerste zien we dat de elektriciteitsvraag nog steeds toeneemt enmeer �uctue-
rend wordt als gevolg van de toenemende welvaart en het toenemen van elektriciteit
verbruikende activiteiten, zoals elektrisch koken en elektrisch rijden.

Ten tweede vraagt het stochastische gedrag van de elektriciteitsvraag, als gevolg
van menselijk handelen, en het gebrek aan �exibiliteit aan de consumptiekant van
de energieketen dat de elektriciteitsproductie constant aangepast moet worden
om vraag en aanbod in balans te houden. Deze constante aanpassingen verlagen
de e�ciëntie van de elektriciteitscentrales. Door de toenemende vraag en extra
�uctuatie zal in de toekomst de belasting op de energieketen alleen maar toenemen.

Als laatste is is er een sterke maatschappelijke wens om onze belasting op het
milieu te verminderen door minder CO� uit te stoten. Een dergelijke vermindering
vereist veranderingen in de huidige elektriciteitsvoorziening. Met name elektrici-
teitsproductie gebaseerd op hernieuwbare bronnen of het gebruik van biobrandstof-
fen met een hogere e�ciëntie is wenselijk. Helaas is de productie van hernieuwbare
bronnen slecht of zelfs niet te besturen vanwege de afhankelijkheid van zon-, water-
of windenergie, met als gevolg dat elders in de keten �exibiliteit zal moeten worden
toegevoegd.

Bovengenoemde trends zullen leiden tot een toename van op hernieuwbare
bronnen gebaseerde gedistribueerde energieproductie en hogere pieken in de elek-
triciteitsvraag. De benodigde extra �exibiliteit nodig voor een goed functionerend
elektriciteitsnetwerk zal deels moeten komen van de consumptiekant. Consumen-
ten of consumerende apparaten zouden actiever bezig moeten gaan en een deel
van hun �exibiliteit moeten benutten om in�exibiliteit van generatie op basis van
hernieuwbare bronnen te compenseren. Technieken als bestuurbare gedistribu-
eerde productie, gedistribueerde energieopslag en slimme apparaten kunnen de
benodigde �exibiliteit introduceren in de huidige keten. Slimme apparaten met
meer intelligentie kunnen hun vraagpro�el aanpassen aan de situatie in het elektri-
citeitsnetwerk, zonder enig verlies van comfort voor de eindgebruikers. Apparaten

xi
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als diepvrieskisten en koelkasten kunnen hun koelcycli naar voren of naar achter
schuiven om zo bijvoorbeeld de vraag en aanbod van energie eenvoudiger in balans
te houden. Apparaten als wasmachines en vaatwassers kunnen naast het verschui-
ven van hun startmoment ook hun energieverbruik aanpassen door bijvoorbeeld
wat sneller of langzamer het water te verwarmen.

Om gebruik te maken van dezemogelijke nieuwe �exibiliteit zal het netwerk zelf
ook intelligenter moeten worden. Deze nieuwe, meer intelligente netten worden
ook wel ‘Smart Grids’ genoemd. In een Smart Grid worden productie, transport
en consumptie continue gemonitord, geregeld en gecoördineerd om het systeem
stabiel en betrouwbaar te houden. Dit vereist dat zowel technische, economische
als wetgevende uitdagingen aangepakt worden. Men verwacht dat ICT hierbij in de
toekomst een essentiële rol zal gaan spelen.

In dit proefschri� wordt T�����, een besturingsmethode voor Smart Grids be-
staande uit voorspelling, planning en real-time aansturing gepresenteerd. Het doel
van deze besturingsmethode is het beheren van energiepro�elen van individuele
apparaten in gebouwen om zo de energietransitie naar een duurzame energievoor-
ziening mogelijk te maken. T����� is ontwikkeld op de Universiteit Twente. Dit
proefschri� richt zicht vooral op de eerste twee stappen van T�����. In de eerste
stap, de voorspelstap, wordt de �exibiliteit in de aansturing van een apparaat be-
paald. Deze �exibiliteit is afhankelijk van het type apparaat, de apparaatspeci�eke
beperkingen en de omgeving waarin het apparaat zich bevind. De �exibiliteit van
bijvoorbeeld de al eerder genoemde diepvriezer wordt bepaald door de toestand van
de diepvriezer (huidige interne temperatuur, de toegestane temperatuurlimieten),
de isolatiekwaliteit van de diepvriezer, het aantal vriesstanden, hoe vaak bewoners
etenswaren erin/eruit halen etc. De voorspellingen worden voor ieder individueel
apparaat gemaakt, aangezien apparaatspeci�eke informatie en beperkingen bekend
moeten zijn om ze correct aan te sturen.

Door het enorme aantal apparaten aanwezig in het netwerk, elk met eigen in-
formatie, beperkingen en omgeving, worden de voorspellingen bepaald door een
ingebed systeem aanwezig in het gebouw. Dit ingebedde systeem, in dit werk een
lokale controller genoemd, is een systeem dat kan communiceren met de slimme
apparaten en informatie over (de bewoners van) een gebouw kan verzamelen. Door
de voorspellingen lokaal uit te voeren is het systeem schaalbaar, omdat er geen
informatie over elk apparaat gecommuniceerd hoe� te worden naar een centrale
plek. Bovendien wordt de vereiste rekenkracht nodig voor de voorspelling ver-
spreidt. Door de voorspellingen lokaal uit te voeren kunnen lokale gebouw- en
bewonerspeci�eke karakteristieken meegenomen worden in de voorspelmethoden.
Dit kan de kwaliteit van de voorspellingen verbeteren. Bovendien kan de omgeving
van een apparaat veranderen door het natuurlijk gedrag van de bewoners. Door
gebruik te maken van lokale observaties kunnen deze veranderingen gebruikt wor-
den om het voorspellingssysteem aan te passen aan nieuwe situaties. Het doel is
om, door gebruik te maken van lokaal verzamelde data, een volledig autonoom
voorspellingssysteem te bouwen dat geen interactie met de bewoners nodig hee�.
Als voorbeeld voor een dergelijk systeem worden de voorspelmogelijkheden van
een HRe ketel verder onderzocht in dit proefschri�. De aansturingsvrijheid van
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een HRe ketel (in combinatie met warmte-opslag) wordt bepaald door de grootte
van het warmtevat, het huidige opslagniveau en de verwachte warmtevraag van
het gebouw en de bewoners. In dit geval worden historische warmtevraaggege-
vens en weerinformatie beschouwd als goede kandidaten om als invoer voor het
voorspelsysteem te gebruiken. Via een ‘simulated annealing’ algoritme worden de
juiste invoergegevens en andere voorspellingsparameters bepaald. Door gebruik te
maken van simulated annealing kan de voorspelfout beperkt worden.

In de tweede stap van T����� probeert een planner de besturingsvrijheden van
apparaten, zoals bepaald in te eerste stap, te gebruiken voor een bepaald doel. Het
doel van de planner kan bijvoorbeeld het bereiken van een geheel vlak verbruiks-
pro�el zijn, of zoveel mogelijk energievraag te verschuiven naar bepaalde perioden
van de dag. Gebaseerd op de informatie van de eerste stap genereert de planner
een gewenst en uitvoerbaar pro�el voor een grote groep gebouwen, bestaande uit
pro�elen voor elk individueel gebouw/apparaat.

Het planproces wordt uitgevoerd door een hierarchisch planning systeem, be-
staande uit een centrale planner boven in de hierarchie, meerdere tussenliggende
planners verantwoordelijk voor een bepaald gebied en onderaan in de hierarchie
de controllers aanwezig in de gebouwen. Door het opeenvolgend opdelen van het
planningspobleem in kleinere problemen, die opgelost worden binnen de lagere
niveau’s, wordt wederom een schaalbaar systeem bereikt. Door het samenvoegen
van informatie op ieder niveau in de hierarchie wordt de hoeveelheid communicatie
naar boven telkens verminderd. Gebaseerd op stuursignalen ontvangen van de
centrale planner en de lokaal voorspelde besturingsvrijheid geneert de planner een
planning voor elk apparaat via apparaat speci�eke kostenfuncties. Door het itera-
tief aanpassen van de stuursignaal worden de pro�elen van de gebouwen zodanig
aangepast totdat een doelpro�el bereikt is.

Het bepalen van de stuursignalen kan op verschillende manieren en op ver-
schillende plekken binnen de hierarchie. De beste resultaten worden bereikt door
voor elk gebouw unieke stuursignalen te gebruiken, bepaald door de planner op
het laagste niveau in de hierarchie.

Omdat de gemaakte planningen gebaseerd zijn op voorspellingen en deze voor-
spellingen niet foutloos zijn, kan het voorkomen dat er afwijkingen ontstaan ten
opzichte van de planning. In een herplanningsfase wordt een nieuwe planning
gemaakt, gebaseerd op de huidige situatie en verbeterde voorspellingen gebaseerd
op meer actuele informatie. Het gebruik van herplanning leidt tot een signi�cantie
verbetering in het behalen van het gewenste pro�el.

In de derde en laatste stap van T����� worden alle apparaten bestuurd door de
lokale controller. Op basis van de wensen van de planner probeert de controller de
apparaten zodanig aan te sturen dat de gewenste planning zo goed mogelijk bereikt
wordt. De aansturing moet hierbij rekening houden met eventuele voorspelfouten,
de huidige situatie en het comfort van de bewoners. Indien een planning niet
haalbaar blijkt te zien kan de controller de planner waarschuwen. Daarna kan,
indien nodig, een nieuwe, op de huidige kennis gebaseerde planning gemaakt
worden. Belangrijk hierbij is dat ten alle tijde het comfort van de bewoners behouden
blij�.
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Om de invloed van verschillende besturingsmethoden voor een Smart Grid
te analyseren is er een simulator ontwikkeld. Als basis voor deze simulator is een
energiemodel ontwikkeld. Met behulp van het energiemodel kunnen individu-
ele apparaten en de energiestromen (elektriciteit, warmte, gas enz.) tussen deze
apparaten uitgedrukt worden. Apparaten kunnen energie consumeren, opslaan,
converteren of uitwisselen. De apparaten worden met elkaar verbonden via ‘pools’,
die representaties zijn van de fysieke verbindingen tussen apparaten. Via deze pools
wordt er altijd gezorgd voor een energiebalans door te eisen dat de som van de
energiestromen altijd nul moet zijn. Het model is geïmplementeerd in de simulator
en de lokale controller bestuurt de apparaten via apparaatspeci�eke kostenfuncties.
Deze kostenfuncties bieden een algemene, �exibile maar toch krachtige manier om
de huidige, maar ook toekomstige apparaten te besturen.

Naast een implementatie van het energiemodel biedt de simulator ook raam-
werken voor de con�guratie van instanties van het model, de mogelijkheid om
stochastische variaties toe te voegen enmiddelen om de resultaten van een simulatie
te analyseren. Doordat het energiemodel rekenintensief is, biedt de simulator de
mogelijkheid om een simulatie te distribueren over meerdere computers. Het on-
derliggende benodigde communicatieraamwerk voor de gedistribueerde simulatie
kan ook gebruikt worden door de verschillende besturingsmethoden. De simulator
verdeelt de last over de beschikbare computers in het netwerk en bereikt daarbij een
snelheidswinst lineair aan het aantal computers dat meewerkt aan een simulatie.
De snelheidswinst wordt wel beperkt door de traagste computer.

Om de e�ectiviteit van T����� te toetsen, de beste parameters van de bestu-
ringsmethode te vinden en de rendabiliteit van slimme apparaten te bepalen zijn er
verschillende scenario’s gesimuleerd. Simulaties van deze scenario’s tonen aan dat
T����� in staat is de energiestromen te beheren zonder enig comfortverlies voor de
bewoners. Met behulp van T����� is men in staat om uiteenlopende doelfuncties te
bereiken en verschillende soorten apparaten aan te sturen. Met behulp van T�����
kunnen dus de energiepro�elen gemonitord en aangepast worden.

T����� kan autonoom de besturingsvrijheden van een grote groep appara-
ten bepalen en met behulp van planning en aansturing deze vrijheden gebruiken.
De combinatie van voorspellen, plannen een realtime aansturing is een veelbelo-
vende richting voor besturingsmethoden voor Smart Grids; de aanpak is schaalbaar,
generiek en betrouwbaar.
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CHAPTER �
I�����������

Technological advances of the last centuries has given the western world a high
quality of life, a good health system and for most people a comfortable home
to live in. As a result, we live in a high-tech society, and this technology has to
be fueled with energy. Unfortunately, most of the energy nowadays is provided,
directly or indirectly, by using fossil fuels. Furthermore, looking at our past energy
consumption, a continuing trend of increased energy consumption can be seen and
it is expected that this increase will continue for the coming years.

Besides our continuous increasing demand for energy, developing countries
like China and Brazil also need a lot energy to feed their growth. �e increasing
demand for energy, and thus the demand for fossil fuels, puts stress on the fossil fuel
production. �e production capacity and the limited availability of easily accessible
resources cannot keep up with the increasing demand, leading to shortage and
higher prices. Furthermore, fossil fuels are mostly harvested in political less stable
regions, on which most countries do not want to be dependent on.

Next to the increasing price, environmental concerns are becoming more and
more important. �e consumption of fossil fuels leads to a major increase of
greenhouse gases, with all the negative impacts on the environment as a result.
�erefore, alternative sustainable methods to provide society’s energy are important
topics.

One way to decrease the dependence on fossil fuels is to change to bio-fuels,
which have the same properties as conventional fossil fuels, but can be created
using crops. �erefore, the amount of greenhouse gases does not increase. Another
advantage is that the currently used system (based on fossil fuels) can be used, since
they can be fueled with bio-fuels.

Other options are to change to an all-electric energy system, and produce this
electricity as sustainable as possible. Obviously, these devices should be e�cient
in energy consumption. An advantage of this approach is that it is �exible to
be implemented. �e electricity production can change to a more sustainable

�
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production process without any change on the consuming devices. �is, however,
assumes that all the required electricity can be produced and transported e�ciently.
Both are nowadays not the case, and additional solutions in the grid are necessary.

On the production side, sustainable electricity production can be achieved using
production methods based on renewables sources like wind and solar. A problem
with wind and solar is that their production can only be decreased, and is thus only
partly controllable. �e production capacity is determined by nature, and other
mechanisms are required to keep the production and consumption of electricity in
balance. Electricity bu�ers might be a solution, but most of the currently available
electricity bu�er technology has a low e�ciency and problems with wearing, which
makes it an economically infeasible solution.

Next to an predictable production, also the transportation and distribution
network has to be able to transport all the demand. �e current grid is designed and
built decades ago. If the current design and control philosophy is continued, the
rising energy demand requires a signi�cant increase in grid capacity and operation
costs.

To avoid this, a more intelligent grid should be created, in which Information
and Communication Technology (ICT) systems help to better match demand and
supply and increase the amount of possible renewables in the grid whilemaintaining
a safe, dependable grid. �e focus of this thesis is on the requirements, possibilities
and algorithms of such ICT systems.

In the remainder of this chapter �rst the current energy supply chain and its
expected changes are described. �ese expected changes result in a transition to a
new, improved energy supply chain which is described next. Based on the imposed
challenges, the problem description and the research focus is given in Section �.�.
�e approach and the contribution of this thesis is given in Section �.�. Finally, the
outline of this thesis is given in Section �.�.

�.� E������� ������� �� ��� ������ ������ �����

Traditionally, most western countries supply domestic electricity demand through
generation in large central power stations, with subsequent transmission and distri-
bution through networks. �e generation e�ciency of the power stations varies
between around ��� (older coal stations) to over ��� (modern combined cycle
stations), averaging to about ���. When transmission and distribution losses are
considered, the average overall e�ciency of the system drops to ��� [��].

Besides the ine�ciency of the various power stations, more ine�ciency is added
to the grid due to the stochastic nature of the consumption. Since electricity storage
cannot be achieved e�ciently and economically, the whole electricity supply chain
is based around balance. Balance is achieved by constantly adjusting the production
of electricity to the demand. If the demand increases, management and control
systems in the grid ensure that production of the power plants is increased as well.
Similarly, the production capacity is lowered when necessary.
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Figure �.�: Energy demand of Dutch households

An example of a typical load pro�le, gathered from TenneT, is depicted in
Figure �.�, in which the load on the Dutch transmission grid in MW per hour of
March � ���� up to March �� ���� is shown. Here a typical periodic behavior of the
consumption can be seen. During the night the demand drops to the base load,
which results from all continuously switched on devices. In the morning, when
people start their day, we see the �rst peak of the day. A second peak can be seen in
the evening, when people are at home.

If we look at the energy demand of the Dutch households over the last decade�,
as shown in Figure �.�, we see two trends. First, the natural gas demand is decreasing,
caused by better insulation quality of modern buildings and other, alternativemeans
for heating. Furthermore, the overall energy demand roughly maintained the same,
caused by the increasing electricity demand. In other words, electricity will become
a more dominant energy carrier in the future.

It is expected that this growth for electricity will continue. Emerging technolo-
gies, like electrical transportation, increase the electricity demand signi�cantly.
Where most domestic devices have a relative low demand, charging power will
require in the order of �� up to �� kW to charge the battery within a short amount of

�from http://www.compendiumvoordeleefomgeving.nl/indicatoren/
nl0035-Energieverbruik-door-huishoudens.html?i=6-40

http://www.compendiumvoordeleefomgeving.nl/indicatoren/nl0035-Energieverbruik-door-huishoudens.html?i=6-40
http://www.compendiumvoordeleefomgeving.nl/indicatoren/nl0035-Energieverbruik-door-huishoudens.html?i=6-40
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time. As shown in Figure �.�, the load is quite dynamic already and the introduction
of electric transportation can make the demand even more dynamic. Not all power
plants can adjust their production capacity fast enough to maintain the delicate
balance. �erefore, peak power plants with a very dynamic production capacity
are used within the grid. �ese peak power plants are, due to their �exibility, very
ine�cient. It would be better to maintain a steady production pattern, for which
the production plant could be designed.

�e dynamic behavior does not only determine the required production capacity,
it also determines the transmission and distribution capacity of the grid. �e grid
must be able to handle the highest peak, resulting in high investments in the grid
and thus, for a large part of the day, low utilization of the system.

Another trend in the coming decades is that a larger part of electricity demand
will be generated in a distributed setting. Photovoltaics (PV) solar cell and wind
turbines o�er sustainable methods to generate electricity. Especially PV cells are
good distributed generators which can be easily installed on top of buildings and
houses. Also other kind of micro-generators are emerging, like micro-Combined
Heat and Power (CHP) appliances, micro gas turbines, micro windmills, heat pumps,
etc. Although some of these micro-generators are still fueled by fossil fuels, their
e�ciency o�en is very high. For some of these generators both electricity and heat
are produced while consuming fossil fuels. In case of a conventional power plant,
this heat is o�enwasted, while in the building the heat can be used for central heating
or for hot tap water. Due to the increased e�ciency of these micro-generators, the
overall e�ciency can increase.

�e last important trend in the energy supply chain is the introduction of so
called smart appliances. Like described above, currently demand follows consump-
tion in the total supply chain. However, generators based on renewables lack proper
ways of control, requiring adjustment in the consumption if these technologies
are introduced on a larger scale. �erefore, appliances with more intelligence are
needed to adjust their demand pro�le dependent on the current situation in the
grid. For example, freezers and fridges may advance or postpone their cooling
cycles to better match their electricity demand to the production capacity available.
Appliances like a washing machine and/or dishwasher can advance/postpone their
start-time, but may also alter their electricity consumption pattern by reducing
the amount of power they consume for heating the water. All these appliances
introduce a lot of �exibility. In total up to ��� of the electricity consumption of a
household can be shi�ed in time [��].

�.� T��������� �� � ����� ����

�e trends for the energy supply chains, as described in the previous sections,
introduce challenges that need to be tackled in the near future. Social pressure to
reduce our CO� footprint and keep our energy supply a�ordable requires a paradigm
shi� in the way we produce and consume energy. ICT can play an important role to
facilitate the required changes in the energy supply chain, preferably without any
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loss of comfort for the end users. On the production side of the supply chain, many
control systems already monitor and manage the production process. Since the
amount of production has to follow the energy consumption, an advanced control
and management system is required. Furthermore, advanced computer models to
forecast the electricity demand are used to optimize the fuel purchase and control
strategy of big power plants.

Although on many locations the electricity �ow is measured, the amount of
intelligence in the distribution/transportation network is limited. Currently, opera-
tors continuously monitor and manage the grid and changes in the operation o�en
have to be performed manually. One of the problems with the current grid is that
it is designed and built decades ago. �e hardware in the grid endures for a long
period of time, slowing down the innovation and renewal of the grid. Especially
in the �eld of communication a lot of improvement have been achieved only in
the last years. �e addition of communication within the grid is essential when
automating decision making within the distribution and transportation network,
since information about subsequent and surrounding networks is required. Insti-
tutes like National Institute for Standardization and Technology (NIST) and Institute
of Electrical and Electronics Engineers (IEEE) are working hard to determine Smart
Grid communication standards. By continuously monitoring and managing power
�ow and power quality parameters, a more robust and fault-tolerant grid can be
achieved.

Using ICT in buildings for energy management is a quite new concept. For large
buildings with complex Heating, Ventilating, and Air Conditioning (HVAC) and
facade systems, advanced management and control systems do exists, but mainly
operate to minimize the energy requirements while maintaining a comfortable tem-
perature for the residents. �ese systems work independently, without cooperation
with other parties in the grid. Within houses, most devices also work independently.
Devices are switched on by the residents and continuously working appliances like
freezers and fridges solely use local circumstances like the internal temperature in
their control. As mentioned earlier, quite some load of a household can be shi�ed
in time, and a smart control system in the house can coordinate this task. By contin-
uously monitoring the status and electricity load of appliances, the control system
can adjust the energy pro�le. �e goal of such a control system is to exploit the
�exibility of devices, while maintaining the comfort level of residents. Perhaps a
certain level of comfort may be sacri�ced, for which a resident may be compensated
and/or rewarded.

Using control systems in individual buildings, controlling di�erent appliances,
the overall energy pro�le of the building is adjusted. By adjusting the pro�les, the
objective of adjusting the demand to the production based on renewables can be
reached. Another objective can be adjusting the demand to reach a �attened demand
pro�le which can be provided more e�ciently by power plants. �e objective of
the control system can thus di�er, and perhaps cooperation and coordination with
other control systems in the electricity supply chain may be needed/desirable, i.e.
optimization and control can occur onmultiple levels in the grid andwith a di�erent
scope:
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In this work, three possible control levels are used:

Local Control A local controller placed in a building might alter the energy pro-
�le of a building without any coordination with other energy management
controllers in other buildings. All optimization is on a local, in-building level.
Example objectives might be to shi� as many load as possible to periods with
low energy tari�s, or peak shaving to �atten the overall energy pro�le.

Micro-grid control Adi�erent local energymanagement controllermay cooperate
within a so called micro-grid. By using a separate controller for this micro-
grid, this micro-grid controller coordinates with the di�erent local energy
management controller present in each building. �e micro-grid can be
a part of the distribution network, for example within the neighborhood.
Using this approach, assets spread in the neighborhood may be utilized more
e�ciently. For example, if in a neighborhood multiple local generators are
present, like PV cells or micro windturbines, the electricity produced by these
generators can be utilized more e�ciently by shi�ing consumption of devices
within the neighborhood to match this production. �e electricity then stays
within the neighborhood and thus does not have to be transported elsewhere.

Virtual Power Plant An option on an even broader level is the creation of a Virtual
Power Plant (VPP).�e basic principle of a VPP is to emulate the production
capacity of a conventional power plant by controlling a (very) large �eet of
(controllable) micro-generators. By using a proper control scheme, the large
�eet of micro-generators can be used for commercial exploitation, i.e. using
the production capacity on an electricity market.

�is thesis is carried out as part of the SFEER project, funded by Essent�, GasTerra�,
and technology foundation STW�, in which the creation of a VPP using micro-CHP
appliances is researched. A micro-CHP appliance is a system that produces heat and
— as a by-product during the heat production — electricity. By adding a heat store
to the heating system, the production and consumption of heat can be decoupled
(within the boundaries set by the heat demand and the bu�er dimensions).

In the VPP scenario, the local controller is responsible for the control of the
micro-CHP appliance. By exploiting the �exibility added by the heat bu�er, the
production of the micro-CHP appliance can be changed from a heat demand-driven
control to a electricity-demand control. �e produced electricity can than, for
example, be traded on an electricity market. In Section �.� results of the creation of
a VPP based on real life data is presented.

�.�.� ��� ��� ������ �����������

Adding ICT systems to the grid enables the possibilities mentioned above. �e
smart controllers present in each house can continuously cooperate and coordinate

�http://www.essent.nl
�http://www.gasterra.nl
�http://www.stw.nl

http://www.essent.nl
http://www.gasterra.nl
http://www.stw.nl
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Figure �.�: Energy consumption and saving of ICT (Source: Simon Mingay of
Gartner UK and Ministry of Economy, Trade & Industry, Japan)

with each other to achieve the desired objectives. However, ICT systems themselves
consume energy as well. �e saving and improvements achieved by incorporating
ICT into the grid should clearly be bigger than the extra energy consumed by these
systems. �ese con�icting issues are illustrated in Figure �.�, using data from the
Ministry of Economy, Trade & Industry in Japan. �e �gure shows that, although
the energy consumption of ICT as a whole is still increasing, this increase in energy
consumption is superseded by the impact of smart ICT for energy management.

�.�.� �������

Although the e�ciency of the energy supply chain may be increased by using
ICT, with all the bene�cial e�ect on the environment, still there are some non-
technical concerns. Especially privacy is a sensitive and important issue. When
in ���� the Dutch government tried to make a smart meter compulsory, many
citizens and digital rights organizations started to protest against the new proposal.
Smart meter data contains a lot of information about whether or not people are at
home, what their habits are etc. �erefore, when building technical solutions for a
smarter grid, these privacy concerns should be taken into account. �e information
communicated within the grid should contain the least possible information about
speci�c household. If some privacy sensitive information has to be sent, it should
be sent as anonymously as possible. Without taken the privacy issues into account
when designing the smart grid, the technology may not be accepted by society.
People must clearly see the added value of the smart grid, without any or with the
least possible loss of comfort and privacy.
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�e goal of this research is to investigate the possibilities of using ICT control systems
to change the energy pro�les of buildings. By properly changing the energy pro�le
of buildings, the current electricity supply chain can be more e�cient. Newly intro-
duced technology enhances the grid and enables the possibility for better demand
and supply matching and allows a larger part of the electricity production via re-
newable energy sources. By improving the e�ciency and enabling the possibility to
enlarge the share of renewables in the chain, a more sustainable supply of electricity
can be achieved.

To change energy pro�les of a building, �exibility is needed in the way devices
can be used, preferable without any loss of comfort. �erefore, an ICT system
should be able to determine the �exibility of a device. To determine the �exibility,
information about the device and the environment where it is located are important
factors. A crucial part of a devices’ environment are the residents of the building
where the devices are located. People might be willing to put some e�ort into
energy saving, but the system should not require too much intervention from the
residents. Preferably, a system should be able to determine the �exibility of the
devices completely autonomously.�erefore, a system should be generic and �exible
to be able to work with di�erent kind of devices.

Another important aspect of the system is that it consists of many elements.
�ere are quite some buildings/houses in the grid, each with many devices. �e
whole system may consist of up to millions of devices which need to be managed.
�is requires a fast and scalable system. When cooperating within such a large
group of systems, an e�ciently organized command structure is required, since
some decisions have to be made really fast (in real-time) to maintain proper and
stable functioning of the electricity network. It might be acceptable that when a
device like a washing machine is switched on, it takes a couple of seconds before
the devices actually start. But for a system which regulates power quality, decisions
have to be made much quicker.

Since cooperation is required, communication within the system is essential.
When designing the smart grid, opportunities and limitations set by the communi-
cation system should be taken into account. For example, it may not be feasible to
communicate with millions of buildings within a short period of time from one
central place. E�ects of latency and limited bandwidth must be dealt within the
system design.

In this research, the above mentioned goals with the accompanying challenges
are considered. More concrete, in this work the following research questions are
stated:

�. What is the optimization potential of devices located in buildings/houses?

�. How can this optimization potential be exploited?

�. How can a control system autonomously determine the optimization poten-
tial of devices?
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�. What is a proper control system and methodology to utilize the optimization
potential, taking the size and timing constraints of the system into account?

�.� A������� ��� ������������ �� ���� ������

As mentioned earlier, the goal of this research is to investigate the possibilities
of using ICT control systems to change the energy pro�les of buildings. At the
University of Twente, T�����, a three step control methodology has been developed.
�e control methodology consists of multiple control systems, located at di�erent
levels within the grid. More precisely, it consists of the following three steps:

�. Forecasting In order to adjust or alter the consumption pattern of building by
controlling the devices, the device status and their possibilities to shi�/adjust
their consumption pattern must be known in advance. For certain classes
of devices, possibilities can arise for �exibility of control. Using information
about the device and the environment in which a device is located, the control
freedom (�exibility) of that device can be determined. For example, in case of
the VPP in the SFEER project, the heat production (and thus also the electricity
production) of amicro-CHP is determined by the heat demand of a household.
Furthermore, if there is a heat bu�er present, other aspects like the state of
charge of the bu�er, the insulation quality of the bu�er and the size of the
bu�er determine the production capacity.

�. PlanningUsing the information about the �exibility of the devices, a planner
located in the network tries to use this �exibility to achieve a certain objective.
�e planner generates schedules for a group of devices for a given time in
the future. �e planning is dependent on the objective, and while planning,
device speci�c constraints should be taken into account. In the VPP example,
based on the expected heat demand and the restrictions of the heat bu�er
and the micro-CHP appliance, a planning of the runtime of the micro-CHP
can be determined. �e objective can be to maximize the earnings on the
produced electricity by producing the most electricity during high price
periods. �e heat demand adds a constraint on the amount of heat that
can be generated. �e heat bu�er loosens the heat demand constrains a
bit by allowing extra �lling or emptying of the heat bu�er, but this limited
by the bu�er size. �e micro-CHP appliance itself also adds constraints on
the runtimes of the appliance. Once it is started, it takes a while before the
appliance produces electricity at the maximum rate. Furthermore, there may
be a minimal o�-time before a consecutive start of the appliance is allowed.

�. Real-time control�e planner generates a certain energy pro�le of a building
by determining the run-times of the controllable devices within that building
for a certain period.�e local controller, located in the building, is responsible
for reaching the planning. Based on criteria set by the planning, the local
controller controls the devices to achieve this planning to the best possible
way. Since the planning is made in advance based on forecasts, the actual
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situation might di�er from what was forecasted. �erefore, the real-time
control should be able to work around these forecast errors, or perhaps signal
to the planner that the planning cannot be reached and a new planning,
based on the current situation, is required. Essential in this approach is that
the comfort levels of the residents must be maintained. If there is a con�ict
between what the planner wants and what the residents require, the residents
must have precedence.

In this work, a number of elements of the three step approach are researched.
First, the forecasting step in the three step approach is investigated (Chapter �). In
contrast to former research forecasting energy demand on large systems, in our
approach forecasting is performed on an individual device level. We mainly focus
on individual heat demand prediction, which is the �rst contribution.

Furthermore, theways inwhich this forecasted data is used in the other two steps
is researched. In this part, multiple (hierarchical) control structures are possible
(Chapter �). �e second contribution is the analysis of di�erent control structures
between the planner and real-time controllers.

Before the e�ects of the control system and algorithms can be analyzed, �rst
models of the energy supply chain are required. Since the focus is on controlling
individual devices, energy �ows between devices needs to be modeled. �e third
contribution of this is the development of such an energy �ow model, powerful and
generic enough to model energy �ows of di�erent energy carriers on a device level
(Chapter �). Based on this model and real demand data, realistic computer models
of the energy �ows of a group of households can be simulated.

On top of this model, control strategies and algorithms can be implemented.
�e energy �ow model, control strategies and algorithms all have been bundled
into an energy �ow simulator. Due to the architecture of the simulator, di�erent
large scale scenarios comprising di�erent combinations of technology, use cases
and control algorithms can be quickly simulated and analyzed. �is simulator is
the fourth contribution of this work (Chapter �).

Using the developed models within a simulator, the e�ects of the three step
control methodology are analyzed. Based on acquired real life data, the opportu-
nities of the smart grid are analyzed via multiple use cases. In these use cases, the
forecasting, planning and control algorithms have been investigated for scenarios
with mostly heat demand driven devices. Since real life data has been used, this
gives a good indication of the power and possibilities of the control methodology.
�e brief analysis of the possibilities of the control methodology is considered as
the last contribution of this work (Chapter �).

Besides technical and economical aspects of using the domestic potential, also
the cooperation of residents is important. Asmentioned above, the system should be
running autonomously. It may be that some residents are willing to put some e�ort
in energy saving, but this may di�er per household. Furthermore, autonomous
systems taking decisions about when or how devices are controlled in your own
house can introduce a certain feeling of loss of control and privacy, and interference
with their personal lives. However, in our research, we approached the optimization
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potential from a purely technical view, the social acceptance and economical analysis
are le� out of scope. �is is le� for future work in the Route �� Energy track of the
University of Twente.

�.� O������ �� ���� ������

In this chapter a brief introduction of the current and expected energy supply with
the corresponding challenges has been given. In the following chapter, some more
background information on the current energy supply chain and corresponding
markets are given. Furthermore, the drivers towards the smart grid and its technical
challenges are discussed. A�er given related work on smart grids research and
control system, our developed three step approach T����� is described. �e �rst
step of T����� is forecasting, which is topic of Chapter �. �e ways in which these
forecasts are used in the other two steps of the distributed control are discussed next
in Chapter �. As described above, a energy model has been made. �is model has
been implemented in a energy stream simulator, which is discussed in Chapter �.
In Chapter � some results of test scenarios using the three step approach T�����
are discussed. We end this thesis with conclusions and future work in Chapter �.
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B��������� ��� R������W���

A������� – �is chapter describes the current electricity supply chain, markets
and the foreseen changes. Current grids, designed decades ago, are demand driven
and electricity is mainly produced centrally. Due to di�culties storing electricity,
balance within the grid is maintained by continuously adjusting the production
to the demand. �e required physical �ow of electricity, both for balancing and
consumption, is traded via many energy markets. Although this system has worked
very well for more than a century, the rising energy prices and environmental
concerns require a more sustainable process of providing electricity. Furthermore,
the electricity demand is still increasing and is expected to keep increasing in the
future. �ese trends result in more renewable, distributed energy production and
higher peaks in the electricity demand. To facilitate the distributed renewable
generation and the increasing demand, the grid has to become a Smart Grid. In the
Smart Grid production, transportation and consumption has to be continuously
monitored, managed and coordinated to maintain grid stability and reliability.
Consumers have to become more active to exploit their �exibility to cope for the
in�exibility of renewables. �is requires that technical, economical and legislative
challenges need to be tackled. ICT plays an essential role within this Smart Grid to
control the whole system. A proposed control methodology for the Smart Grid is
the three step control methodology T�����, consisting of forecasting, planning and
real-time control.

�e Smart Grid can be seen as an evolution of the current energy supply chain,
which has provided us with energy for more than a century. In this chapter, some
background of the current energy supply chain, its infrastructure and the corre-
sponding markets are given. Since this thesis mostly focuses on reshaping the
electricity pro�les in the grid, this chapter only describes the electricity part of the
energy supply chain.

Parts if this chapter have been presented at [VB:��] and [VB:��] .

��
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Although the current grid works very stable, issues like improving the overall
energy e�ciency, the introduction of large scale renewables and the reduction in
CO� require a di�erent paradigm. �erefore, the expected challenges and driving
factors of the transition towards a Smart Grid are given next. A�er giving the
de�nition of Smart Grids in Section �.�.�, the opportunities and possibilities when
using a Smart Grid are described.

New Information and Communication Technology (ICT) and smart control
systems and distributed generation in the grid enable new (business) opportunities
and will change the way electricity is produced and consumed. �e introduction
of communication, distributed generation and smarter appliances can lead to a
system with constant coordination and cooperation between multiple parties in the
grid. T�����, a three step control methodology, exploiting the new opportunities
introduced by the new ICT technology in the grid, has been developed to manage a
large �eet of devices present in the Smart Grid. In Section �.�more information
about each the three steps of this methodology is given.

T����� is the result of a cooperation within a team of three PhD students. Due
to this cooperation, there is a large overlap in the background and related work of
the three projects. As a consequence, some parts of this chapter are reused from
‘On the three-step control methodology for Smart Grids’ by Albert Molderink [��].
Furthermore, due to the collobaration with Dutch partners, parts of this chapter
are motivated from a Dutch perspective as it was during the start of these projects
in ����.

�.� C������ ������ ������ �����

Today most buildings in the western world are constantly provided with energy
required by the devices in the building. For example, when residents of a house
switch on their washing machine or television, the device is switched on instantly.
Automatically, somewhere in the grid, the power required for this device is gener-
ated.

Besides a electricity connection, other grid connections might be present. For
example, many households in the Netherlands have a natural gas connection. �ese
households use gas for cooking, and most importantly for providing heat for central
heating and hot tap water via an installed boiler. O�en, in (large) �ats, heat is
provided via a district heating plant or with a mini-Combined Heat and Power
(CHP) appliance.

�ese connections to a building provide the residents of these buildings all
the energy they demand. However, the supply of the energy-carriers (electricity,
gas, etc)̇ is handled via di�erent supply chains. Gas is harvested on many di�erent
locations throughout the world and transported via many gas pipelines to storage
facilities and/or end users. A similar supply chain exists for electricity. However,
the di�erence between electricity and other energy-carriers is that electricity can be
transported very e�ciently, but not be stored e�ciently. Gas and heat on the other
hand can be stored easily, but transportation requiresmore e�ort.�e characteristics
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Figure �.�: Overview of the electricity network

of the energy carrier have in�uence on the infrastructure. In order to have a properly
functioning supply chain, the supply always has to be able to match the demand.
Bu�ering energy helps to achieve this, simplifying the control system to supply
the demand. In case of electricity, bu�ering is di�cult, resulting in a complex
infrastructure of the whole electricity supply chain. Fluctuations in demand must
be dealt with to maintain a stable, properly working grid.

One important factor of the electricity network is stability. Stability is reached by
keeping the supply and demand in balance at all times. Traditionally, most western
countries supply domestic electricity demand through generation in large central
power stations, with subsequent transmission and distribution through networks.
�e grids consists of di�erent networks with di�erent voltage levels, suitable for
their purpose. Higher voltages have less losses, but are more di�cult to handle,
resulting in higher requirements on safety. Power plants feed in their electricity
in high voltage networks. Subsequent transformers present in the grid lower the
voltage levels stepwise, delivering the energy to the consumers with a relatively low
voltage (��� V in the Netherlands), as shown in Figure �.�.

�e challenge of keeping balance in the system is the �uctuating demand. �ere
are many reasons for these �uctuations in the electricity demand. On the longer
term, seasonal e�ects have big in�uences on the energy demand. For example, in
the Netherlands during winter the electricity (and gas) demand is higher due to the
cold weather and the early sunset. On the short term, a daily demand pattern can
be seen as well. During the night, demand is low. In the morning, people get out of
bed and most o�ces start up, resulting in a morning peak. Another peak can be
seen in the evening. �e minimum amount of demand is called the base load and
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Figure �.�: Simpli�ed overview of the electricity network and markets

the highest peak is called the peak load.
On the supply side, �uctuating demand is supplied by di�erent kinds of power

plants. �e base load is supplied with large power plants, o�en �red by coal or
nuclear power. �ese power plants are, due to their nature, in�exible in adjusting
their production output in short term and therefor more suitable for supplying the
base load. Other power plants, with a more �exible production pattern can be used
to handle the short term �uctuations in the demand. Unfortunately, the �exibility
of these plants o�en comes with a decrease of e�ciency. For the really short term
�uctuations, spinnings reserves are used. �ese spinning reserves are generators
which can be started and stopped within a couple of minutes and are o�en used to
stabilize the grid. In general their e�ciency is low, but they are required to keep the
grid functioning properly and ensure a stable power supply.

�.�.� ����������� �������

Generating electricity requires resources like power plants, fuel, operators etc.
Ensuring balance and a properly functioning grid requires, due to the �uctuating
demand, even more resources. �erefore, electricity has a value, which is traded
via di�erent electricity markets.

�e current (European) electricity markets and the companies trading energy
on these markets are a result of the liberalization and privatization of the energy
markets in the late nineties. Although the liberalization has been implemented
di�erently in di�erent countries, roughly the companies were separated into produc-
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tion companies, distribution companies and energy suppliers. In the Netherlands,
the production companies and energy suppliers became privately owned. �e
Transmission System Operator (TSO) responsible for the high voltage networks was
nationalized via a new grid company TenneT. To operate the distribution network
(medium and low voltages), multiple Distribution System Operator (DSO) compa-
nies were founded, each responsible for a certain area. Since these DSOs and the TSO
still are monopolies, they are regulated by the government.

In the lower part of Figure �.� an simpli�ed overview of the electricity network,
as described above, is depicted. In the bottom of this �gure, the physical �ow
from supplier (‘large generator’) via the subsequent networks to the end users
(‘load’ in the �gure). New in the (smart) grid is the upcoming share of distributed
generation, feeding the locally produced electricity directly into the distribution
network. Although the psychical �ow is straightforward, the economical �ow has a
totally di�erent structure.

As already mentioned, balance is essential to maintain a properly functioning
grid. Achieving this balance has a cost, both in terms of purchase costs for the fuel,
as the costs of o�ering reserve production capacity, since there is a high uncertainty
in when spinning reserves are required. Since demand and supply always have to
be in balance, multiple electricity markets exist. On these market, many players are
present, each o�ering, purchasing and trading energy.

�e base load which solely depends on long term changes (like the seasonal
changes) is most o�en traded using long term contracts (the bilateral market). In the
Netherlands, ��� of the electricity is traded via these long term contracts [��]. �e
short term �uctuations are traded on a day-ahead market, which trades electricity
with a granularity of one hour (the spot market). Since these short term �uctuations
are very dynamic, a production facility which can handle this dynamic behavior
is required. Since this is more di�cult to achieve, the prices on the day-ahead
market are in general more volatile and can be much higher compared to the long
term contracts. �e most expensive electricity is the electricity required for the
real-time stabilization of the grid, which is traded per quarter of an hour on very
short terms (balancing market). As can be seen in the upper part of Figure �.�,
small consumers buy their energy from energy suppliers, which in return buy their
energy on di�erent markets. Very big consumers can buy their electricity directly
on the market.

To ensure balance in the grid, suppliers (producers) and consumers (retailers)
of electricity have to specify one day in advance what their electricity pro�le is going
to be for each quarter of an hour for the next day. For producers this means to
specify the amount of electricity they are going to produce and put into the network.
Retailers specify the amount of electricity they, i.e. their costumers, are going to
consume. �e pro�les are based on forecasts of the electricity demand and the long
term contracts. �e di�erence between what has been traded on before hand (based
on long term forecasts) and the expected electricity pro�le for the next day (short
term forecast), the day-ahead market can be used to close this mismatch by trading
this di�erence on the day-ahead market.

Furthermore, deviation from this speci�cation will result in an imbalance and is
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penalized by a central authority (the TSO). If a deviation occurs, it has to be compen-
sated elsewhere in the network. �e network operators continuously monitor the
stability of the grid. Electricity producers with fast available production capacity can
o�er ancillary services to the TSO.�e TSO can order the right amount of balancing
power to keep the grid functioning properly.

�.� S���� �����

�e current grid has evolved into a very stable and reliable system. For example,
Enexis (one of the Dutch DSOs) has an average downtime of ��.�minutes in ����.
�is is an average uptime of ��.����. Although the grid is working so well as it is
now, it was designed decades ago with di�erent design principles, and environmen-
tal and societal circumstances. Back then, fossil fuels were cheap and abundant.
Electricity was produced at central places and transported one-way towards to
the customers [�, ��]. Although nowadays renewables have an increasing share
in the energy mix, fossil fuels are still dominant. For example, the energy mix of
the Netherlands in ���� [��] shows that ��.�� of the electricity production was
fueled by fossil fuels. But the circumstances are changing: fossil fuels are becoming
expensive and are produced by political less stable countries.

Besides the expected problems in harvesting these fossil fuels, most of the
fossil fuels are consumed with a very low e�ciency. �e generation e�ciency
of power stations varies between around ��� (older coal stations) to over ���
(modern combined cycle stations), averaging to about ���. When transmission and
distribution losses are considered, the average overall e�ciency of the system drops
to ��� [��].�ese fossil fueled power plants exhaust a lot of CO�, with all the resulting
environmental problems. �erefore, groups of countries (e.g. the G� countries)
made agreements about CO� emission reduction [�, ��], for example in the Kyoto
agreement. CO� reduction is in principle possible, but requires (radical) changes in
the way we currently generate, transport and consume electricity. �ese required
changes and the need for other, sustainable energy sources drive a transition towards
an electricity grid that is monitored andmanaged. A change towards another supply
chain with more sustainable energy production via continuous management of
production, transportation and consumption requires a so called ‘Smart Grid’. In
the next section, the driving factors towards this Smart Grid are discussed. A�er
this section, a more formal de�nition of the Smart Grid is given. We end this section
by discussing the technical challenges and possible smart grid control.

�.�.� ��� ������� ������� ����� �����

�e European Technology Platform Smart Grids [��] has identi�ed three groups of
the driving factors towards a smart grid, which are depicted in Figure �.�. To ensure
stability and security of supply, with reduces environmental e�ects for a a�ordable
price, the grid needs to be updated to keep up with changes in demand and supply.
Now is the right moment since the lifetime of a lot of grid elements comes to an
end and need to be replaced [��].
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Figure �.�: Schematic of the driving factors for a Smart Grid [��]

In all three parts of the supply chain (generation, transport and distribution/-
consumption) driving factors exist for the transition towards a smart grid.

In this subsection the driving factors for the three parts of the supply chain and
the driving factor due to liberalization are discussed.

Generation

Today, coal is the main source of electricity generation. A future without electricity
generation using coal is almost unthinkable since coal is cheap, is still almost
abundant and can be harvested in more stable countries [��]. However, coal is one
of the most polluting fossil fuels concerning the amount of CO� emission. One of
the solutions is to capture and store the CO�, so called Carbon Capture and Storage
(CCS). At the moment, a couple of CCS installations are in use (for example [��]).
However, it is not (yet) a broad applicable option and still based on fossil fuels.
Another, better option is sustainable electricity generation using renewable sources
(sun, wind, tides, etc). However, this requires thorough changes and improvements
of the electricity grid.

First, large scale sustainable electricity generation is o�en only possible on re-
mote places with a low density of population and therefore a low electricity demand
(e.g. large wind power farms o�shore or solar panels in the desert). �erefore,
electricity needs to be transported to the customers, requiring a large transmission
capacity. It is expected that the renewable potential in Europe is large enough to
supply all electricity [�]. Mainly in the southern parts of Europe there is a large
(solar energy) potential and when even the Northern part of Africa is taken into
account, the potential is huge. In the Desertec project [��] a concept is proposed for
making use of sustainable energy worldwide. In Figure �.� the proposed solution is
shown. �e dark squares in the desert depict the area required to generate enough
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Figure �.�: Sketch of possible infrastructure for a sustainable supply of power to
Europe, the Middle East and North Africa (EU-MENA) (Euro-Super grid with a
EU-MENA-Connection proposed by TREC) [��].

electricity using thermal solar power plants for the world, Europe, the Middle East
and Northern Africa (MENA) and the proposed combination of Europe and MENA.

Second, large scale sustainable electricity generation is quite di�erent from
conventional power plants, both in generation capacity and controllability. It is, in
general, agreed that it is both desirable and necessary to manage this new type of
generation and adapt the rest of the grid infrastructure to facilitate the sustainable,
unmanageable generation. Also on a domestic level more and more electricity is
generated using micro-generators. Lower capacity generation on various sites, i.e.
generationwith lower capacity than conventional large power plants (e.g. sustainable
and domestic generation), is called Distributed Generation (DG) . Scott et al. [��]
state that a �t-and-forget introduction (just install DG without any control) of
domestic DG will cause stability problems, amongst others by large �ows from
lower to higher voltage levels. A study of the International Energy Agency (IEA)
concludes that, although DG has higher capital costs than power plants, it has a
huge potential and that it is possible with DG to supply all demand with the same
reliability, but with lower capacity margins [��]. �e study foresees that the supply
can change to decentralized generation in three steps: �) accommodation in the
current grid, �) introduction of a decentralized system cooperating with the central
system and �) supplying most demand by DG .

So, next to high capacity lines for long-distance transportation of electricity, a
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sustainable electricity supply also requires more and better monitoring and control
capabilities of all types of generation on di�erent levels of the grid.

Consumers

Next to the supply of electricity, also the demand of electricity changes, especially
when the trend towards a mainly electricity based energy supply continues. �e
overall electricity demand increases every year and is expected to keep increasing
in the coming years. Furthermore, when more electricity consuming technologies
are introduced (e.g. electrical cars) the demand will increase and become more
�uctuating. A �t-and-forget introduction will have a severe impact on the grid
and generation. More capacity and �exibility is required to ensure the expected
reliability and stability of supply. A naive introduction will lead to large investments
and decreased generation and transportation e�ciency.

New domestic appliances lead to some freedom in the electricity consumption
patterns of these devices. �ey can be monitored and managed to change their
consumption pro�le. So, monitoring and control on the lowest level, on a device
level, is desired. With monitoring the expected consumption and production of
domestic devices can be forecasted and control can enable the possibility to exploit
scheduling freedom of domestic devices to work towards (global) objectives.

Transport

For a transition towards a sustainable energy supply with electricity as the main
energy carrier of the future, both more renewable generation and more �exible elec-
tricity consuming devices are required. To merge these two tendencies, generation
and consumption need to be matched. To make this possible, signi�cant improve-
ments in the grid infrastructure and more intelligence in the grid are required.

�e foreseen changes in production and consumption as described in the previ-
ous paragraphs will increase the stress on the grid while at the same time stability,
reliability and self-healance of the grid becomes more important due to the increas-
ing importance of electricity for society. �erefore, the streams through the grid
should bemonitored andmanaged. Geidl et al. [��] propose an alternative transport
medium by combining multiple energy carriers in one “cable”. �ese new cables
interconnect a set of so called ‘energy hubs’, where an energy hub is considered a
unit where multiple energy carriers can be converted, conditioned, and stored. �is
leads to a more �exible supply of combinations of energy carriers and to a synergy
of energy carriers. For example, natural gas can cool the electricity transportation
cables resulting in less transport losses. At the same time the transport losses of the
electricity transport can be compensated at the energy hub by converting natural
gas to electricity via a Combined Heat and Power (CHP) plant.

Another issue is the large distance between areas with high potential for generat-
ing renewable electricity and areas where the electricity is consumed. To transport
the sustainable electricity from the generation site towards the customers, an Euro-
pean wide interconnected high capacity electricity grid is required, in combination
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with a European wide electricity market. One of the technologies for the high ca-
pacity backbone for this European network is High Voltage Direct Current (HVDC).
�is technology is already used for transport of electricity from o�shore wind parks
to the coast. Battaglini et al. [�] propose a super Smart Grid: a combination of a
European wide HVDC backbone (super grid) to transport the unevenly distributed
renewable potential through Europe, partly from the African continent. �is is
combined with clusters of Smart Grids, using decentralized generation and demand
side management in combination with electricity supplied by the super grid to
supply all demand.

�e earlier mentioned Desertec project also proposes a super grid, not only
covering Europe but also Northern Africa and parts of the Middle East (see Figure
�.�). �ey propose a ��,��� km� solar power system in the Sahara desert producing
the main part of the electricity consumption in Northern Africa and ��� of the
electricity needs of Europe.

Liberalization

A third driving factor for improving grid capabilities, next to environment and
changes in demand/supply, is the liberalization of the electricity market. Due to
competition between (distribution) companies they aim for an a�ordable electricity
supply and a stable and reliable grid. Furthermore, an innovative and ‘green image’
is important for companies.

�.�.� ����� ����

�e next generation of the grid is o�en called a Smart Grid. It is hard to give a
de�nition of a Smart Grid. Di�erent parties have their own de�nition, ranging
from a grid capable of charging electrical cars up to a completely controlled grid,
including producers, transmission and consumption. �e authors of ‘A vision for
the smart grid’ [��] state that the Smart Grid is not a “thing” but rather a “vision”:
“�e Smart Grid vision generally describes a power system that is more intelligent,
more decentralized and resilient, more controllable, and better protected than today’s
grid”. Another de�nition of a smart grid given by Scott et al. [��]. �is de�nition is
rather common, so we choose for this de�nition:

“A Smart Grid generates and distributes electricity more e�ectively, economically,
securely, and sustainably. It integrates innovative tools and technologies, products and
services, from generation, transmission and distribution all the way to customer devices
and equipment using advanced sensing, communication, and control technologies. It
enables a two-way exchange with customers, providing greater information and choice,
power export capability, demand participation and enhanced energy e�ciency.”

To develop a Smart Grid, it is important to incorporate the complete grid
including supply and demand [��]. Within the grid itself monitoring and switching
possibilities are added, generation and consuming devices are (partially) extended
with amonitoring andmanaging interface [��]. Optionally this can be extendedwith
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(electricity) storage. A (central) monitoring and control system matches generation
and consumption in the most e�cient way (the de�nition of e�ciency can di�er
depending on the stake holder: reduced CO� emission, less fossil fuel usage, more
pro�t, etc)̇. In [��] is stated that the U.S. electrical infrastructure will evolve as a
highly automated and interconnected network much in the fashion of the Internet;
one where information and knowledge will �ow through intelligent systems to
serve the entire grid community; one where a dynamic network of smart devices
enables the realtime balance of generation and delivery of electricity with the highest
reliability and lowest cost.

�e Smart Grid should be accessible for distributed generation and renewable
energy sources, comply with di�erent forms of generation, enable local energy
demand management (optionally through smart metering systems) and facilitate
dynamic control techniques [��]. Furthermore, it should facilitate high levels of
power security, quality, reliability and availability with minimum negative side-
e�ects on the environment and the society [��]. �e required functionality is
summarized in seven important characteristics of a Smart Grid [��]:

�. enable active participation by consumers,

�. accommodate all generation and storage options,

�. enable innovation, new products and services by market forces,

�. provide high quality power,

�. optimize asset utilization and operate e�ciently,

�. anticipate and respond to system disturbances (self-healing),

�. operates resiliently against attacks and natural disasters.

An important issue is the large number of stake holders involved in the transi-
tion towards a Smart Grid: governments, regulators, consumers, generators, traders,
power exchanges, transmission companies, distribution companies, power equip-
ment manufactures and ICT providers [��]. �ese stake holders need an incentive to
cooperate while in �rst instance it seems to be unattractive for companies. However,
distribution companies can decrease operating and maintenance costs and reduce
capital costs. Production companies can introduce new types of generation and
increase generation by relatively cheap base-load plants [��]. �e consumers can
reduce their costs and increase power quality and �nally society will bene�t from a
stimulated economy and improved environmental conditions [��].

Both Scott et al. [��] and Fraser [��] indicate that commercial attainability and
legislation are important issues for the success of the introduction of DG . �e
opinions on the investments and pro�ts di�er strongly. On the one hand, the
European Climate Forum states that large investments are required while it is
unknown what the actual bene�ts and pro�ts are [�]. On the other hand, the U.S.
department of energy states that the transition towards a Smart Grid already started
and that pro�ts are higher than the investments [��]. �ey even claim that due
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to all bene�ts (e.g. improve safety and e�ciency, better use of existing assets) the
transition towards a Smart Grid will be market driven.

�.�.� ��������� ����������

For a successful introduction of a Smart Grid we face a number of technical chal-
lenges. As a result, there is a lot of research ongoing on di�erent �elds for a more
e�cient and sustainable electricity supply. New power plants themselves are much
more e�cient, CCS is developed to decrease emissions, transmission mediums
with lower losses are developed and domestic devices become more e�cient and
controllable. In [��] �ve key technologies required for the Smart Grid are identi�ed:

�. Sensing and measurement

Since one can only manage what one can measure, sensing and measuring are an
important part of the Smart Grid. �e health parameters of the transmission lines
and substations should be monitored to prevent the grid from outages. Monitoring
and forecasting of the weather can be used for forecasting load and potential output
of renewable sources. �is can subsequently be correlated with transmission line
capacity. Next to the grid, also the generation, storage and consumptions sites and
devices need to be monitored to be capable of balancing generation and usage and
respecting transmission limitations. An Advanced Metering Infrastructure (AMI) is
not only used for billing, but also for monitoring domestic usage, voltage and power
quality. Furthermore, the Smart Meter can be used as a gateway to the domestic
devices and to determine the optimization potential

�. Integrated communications

To transport all information, a high speed communication infrastructure is re-
quired. �is Integrated Communications (IC) infrastructure moves the information
from sensing and measurements devices towards the operators and management
information back to the actuators. Creating a homogeneous communication in-
frastructure requires standards respected by all stake holders, from home networks
and all devices connected to it via the smart meters and the distribution companies
to the overall network operators. �e National Institute for Standardization and
Technology (NIST) addressed this problem and is working together with Institute of
Electrical and Electronics Engineers (IEEE) to create Smart Grid standards [��]. �e
IC infrastructure should be designed with future requirements inmind. �e capacity,
security and performance should be su�cient to facilitate also future applications.
A fast, reliable and well designed IC infrastructure glues all the parts of the Smart
Grid together.

�. Advanced components

A Smart Grid is build up by a network of advanced components. �e grid itself
should consist of e�cient transmission elements connected by advanced �ow con-
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trol devices, e.g. HVDC lines and solid state transformers. On domestic level a lot of
technologies are in development. �ese technologies range from Photovoltaics (PV)
panels on roofs andmicro-CHP [��] up to controllable devices [��].�e technologies
can be subdivided in three groups:

Distributed Generation (DG) In contrast to a few years ago where electricity was
generated in a few large power plants, nowadays and in the future a growing
share of the electricity is generated in smaller, geographically distributed
generators. �is DG ranges from wind turbine parks with a capacity on a
MW level up to domestic DG on a kW level.

Distributed Storage (DS) Especially with a growing amount of renewable sources
in the electricity supply chain there is a growing demand for electricity storage
[��]. Electricity can be producedmore e�ciently (e.g. at daytime) or at certain
periods (e.g. wind, sun) when it is not consumed and thus needs to be stored
[��].
Storage can take many forms, can be spread across a large geographic area
and can be connected to any voltage level [��]. Especially with the large scale
introduction of electrical cars huge distributed controllable storage capacity
becomes available. Furthermore, in multiple projects hardware is developed
to manage domestic electricity streams and store electricity within buildings,
e.g. within the PowerRouter project�. On the other hand, also larger scale
electricity storage is developed, for example in the Smart Substation project
of a Dutch consortium [��], which can be seen as a large version of the
PowerRouter. An important research area for storage is the development of
batteries supplying high requirements concerning capacity, charge/discharge
currents and lifespan of many charge/discharge cycles.

Demand Side (Load) Management (DSM) has the goal to modify the consump-
tion pattern of consumers. About ��� of the load in houses is dedicated to
controllable devices such as refrigerators, freezers, heaters, washingmachines
and dryers [��]. �ese devices can bemanagedwith only a little discomfort for
the residents in contrast to lights and a television, which cannot be switched
o� or shi�ed without discomfort. Field tests in the US have shown that op-
timizations using these manageable devices already can lead to signi�cant
peak reductions [��]. Furthermore, when residents allow a certain level of
discomfort, e.g. a deviation of �.�○C from the settled room temperature, even
more scheduling freedom is gained. Of course there has to be an incentive
for the residents to accept the reduction in comfort.

�. Interfaces and decision support

�e job of a grid operators became much more challenging in recent years. New
tools are required to assist the grid operators. To have enough information in

�www.powerrouter.com

http://www.powerrouter.com
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order to take correct decisions, data mining is very important. Data is produced
by measurement devices, transported via the communication infrastructure and
gathered and presented by advanced visualization tools. �is improved interface is
required to visualize the large amount of data on such a way it can be understood
at a glance. Furthermore, decision support tools help taking decision, for example
using fast simulations to forecast consequences of decisions.

�. Advanced control

To make use of all control capabilities and to exploit all optimization potential,
advanced control systems need to be developed. Advanced protection systems can
adjust relay settings in time for better protection of the grid and even increased
power �ows in some cases [��]. Controlling �ows can for example increase stability,
increase damping of oscillations, operate transmission networks as e�ciently as
possible and assure maximum utilization of transmission assets. �e growing share
of technologies on a lower voltage level that can in�uence real and reactive �ow,
can enhance operators’ ability to in�uence grid conditions signi�cantly. Further-
more, the coordination of (renewable) generation, storage and consumption is
fundamental to reach the targets of a Smart Grid.

�.�.� ����� ���� �������

To create a successful Smart Grid solution and exploit all optimization potential,
the introduced technologies need to be monitored and synchronized to each other.
On the production side of the electricity chain already a lot of control is available.
Controllable production sites, e.g. central power plants, adjusts their production to
the demand, i.e. a feedback loop adjusts the settings based on the grid frequency
to react on small variations. �is monitoring and controlling system is a so called
Supervisory Control And Data Acquisition (SCADA) control system. Next to adjust-
ing the amount of production in a production site, grid operators can decide to
start or stop a (peak) production site completely based on the demand forecasts
and the current power plant states and energy demand. Production sites that are
not controllable need to be monitored and their production needs to be forecasted.

At the moment, the electricity �ows within the grid are mainly only moni-
tored. In a Smart Grid these �ows also need to be managed by (automatically)
adjusting transformer settings to maintain stability and prevent blackouts caused
by overburdening.

However, production and transportation control are also important issues.
�e biggest challenge is managing the technologies connected to the medium and
lowest voltage levels of the grid, themedium sizedDirect Current (DC) and domestic
technologies. By managing the electricity production, storage and consumption of
these technologies a lot of electricity �ows in the net can already be managed. �e
combined �exibility of these technologies is high, but to exploit this potential a lot of
devices need to be monitored and managed. �erefore, scalability, communication
and uniformity issues need to be solved.
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To overcome the scalability and communication issues the structure of the
control system is important. A hierarchical structure with data aggregation on
the di�erent levels is an o�en proposed scheme. Such a structure is scalable while
the amount of communication can be limited. However, when data is aggregated,
information gets lost, i.e. there is a trade-o� between precision and the amount of
communication.

�e goal of a low voltage control system is to manage the cooperation between
the domestic technologies to use the maximum optimization potential. �e pri-
mary functionality of the system is to control the domestic generation and bu�ering
technologies in such a way that they are used properly and e�ciently. Furthermore,
the required heat and electricity supply and the comfort for the residents should be
guaranteed. Some devices have scheduling freedom in how to meet these require-
ments. �is scheduling freedom of the domestic devices is limited by the comfort
and technical constraints and can be used for optimizations.

�e optimization objective can di�er, depending on the stake holder of the
control systems, the system state and the rest of the electricity infrastructure. �e
objective for residents or utilities can be earning/saving money and therefore the
goal is to generate electricity when prices are high and consume electricity when
prices are low. For network operators the goal can be to maintain grid stability and
decrease the required capacity while an environmental goal can be to improve the
e�ciency of power plants. �erefore, a control methodology should be able to work
towards di�erent objectives.

Next to di�erent objectives, control methodologies can have di�erent scopes
for optimization: a local scope (within the building), a scope of a group of buildings
e.g. a neighborhood (micro-grid) or a global scope (Virtual Power Plant). Every
scope again might result in di�erent optimization objectives.

Local scope

Also on a local scope the import from and export into the grid can be optimized,
without cooperation with other buildings. Possible optimization objectives are
shi�ing electricity demand tomore bene�cial periods (e.g. nights) and peak shaving.
�e ultimate goal can be to create an independent building. �is can be done in
two forms: energy neutral or islanded. Energy neutral implies that there is no net
import from or net export into the grid. A building that is physically isolated from
the grid is called an islanded building.

�e advantages of a local scope is that it is relatively easy to realize; it needs
no communication with others (less privacy intrusion) and there is no external
entity deciding which devices are switched on or o� (less privacy issues and hence
a better social acceptance). Objectives like peak shaving can easily be achieved by
preventing the simultaneous usage of many devices. However, an islanded situation
required more investments and is harder to achieve. In this case, higher investment
costs, e.g. in storage capacity and micro-generation, are required in order to supply
all the locally required energy. Some assets, like local storage, might be shared
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with neighbors, reducing the individual costs. �is brings us to the next scope, the
micro-grid.

Micro-grid

In a micro-grid a group of buildings together optimize their combined import from
and export into the grid, optionally combined with larger scale DG (e.g. wind
turbines). �e objectives of a micro-grid can be shi�ing loads and shaving peaks
such that demand and supply can bematched better internally.�e ultimate goal can
be perfect matching within the micro-grid, resulting in a neutral or islanded micro-
grid. �e advantage of a group of buildings is that their joint optimization potential
is higher than that of individual buildings since the load pro�le is less dynamic (e.g.
startup peaks of devices disappear in the combined load). Furthermore, multiple
micro generators working together can match more demand than individual micro-
generators since better distribution in time of the production is possible [�]. Finally,
within a micro-grid the locally produced electricity can be used locally, saving
transmission costs and preventing streams from lower to higher voltage levels.
However, for a micro-grid a more complex control methodology is required.

Virtual Power Plant (VPP)

�e original Virtual Power Plant (VPP) concept is to manage a large group of micro-
generators with a total capacity comparable to a conventional power plant. Such
a VPP can replace a power plant while having a higher e�ciency, and moreover, a
greater �exibility than a normal power plant. Especially this last point is interesting
since it expresses the possibility to react on �uctuations. �is original idea of a
VPP can of course be extended to other domestic technologies. Again, for a VPP
a complex control methodology is required. Furthermore, communication with
every individual building is required and privacy and acceptance issues may occur.

�.� T�����: � ����� ���� ������� ����������� ��� ����� �����

As mentioned in the Section �.�.�, a successful Smart Grid solution requires new
control methodologies to monitor and coordinate the large amount of newly added
technology, like distributed generation and -storage, smart appliances etc. In this
section T�����, a three-step control methodology for smart grids is introduced.
�e goal of this energy control methodology is to manage the energy pro�les of
individual devices in buildings to support the transition towards an energy supply
chain which can provide all the required energy in a sustainable way. �erefore,
the objectives of the control methodology are mainly based on electricity streams.
However, since these streams are tightly interweaved with the other domestic energy
streams, all domestic energy streams are incorporated in the control methodology.

As mentioned earlier, T����� is the result of a cooperation within a team of
three PhD students. Each researcher developed a part of the control methodology.
�e �rst step of the three steps, the forecasting, is topic of this work. �e other
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two steps are mainly performed by the other two PhD students. �erefore, these
two steps are described to the extend which is necessary to understand the overall
control methodology. For more detailed information on the planning step, see the
papers of Bosman [��, ��, ��, ��]. Details about the real time control can be found
in the PhD thesis of Molderink [��].

�e remainder of this section is organized as follows: the next section outlines
the requirements of the control methodology followed by a section describing
related work and giving a motivation for the chosen control methodology. In
Section �.�.� the overall control methodology is explained and the last two steps are
described. Results achieved with the three-step control methodology are presented
and discussed in Chapter �.

�.�.� ������������

�e goal of the control methodology is to monitor, control and optimize the do-
mestic import/export pattern of electricity and to reach objectives which may
incorporate local but also global goals. In this context, local objectives concern
energy streams within the building, e.g. lowering electricity import peaks and using
locally (in or around the building) produced electricity within the building. Global
objectives concern energy streams of multiple buildings, e.g. in a neighborhood,
city or even (parts of) a country. To work towards local and global objectives, the
control methodology optimizes individual devices on a domestic level.

Since there are a lot of di�erent (future) domestic technologies and building
con�gurations, the control methodology should be able to work independently
of the actual con�gurations. Furthermore, the methodology should be �exible
such that new technologies can be added in the future. Consequently, the control
methodology needs to be very �exible and generic.

�e control methodology should be able to optimize for a single building up to a
large group of buildings. �us, the algorithms used in the control system should be
scalable and the amount of required communication should be limited. �e control
methodology should exploit the potential of the devices as much as possible while
respecting the comfort constraints of the residents and the technical constraints
of the devices. Furthermore, the control system should consume signi�cant less
electricity than it saves.

Using T�����, the energy pro�les of buildings can be reshaped. Based on the
stakeholder, many applications are possible. One possible application of the control
methodology is to act actively on an electricity market for a group of buildings. To
trade on such a market, an electricity pro�le must be speci�ed one day in advance.
�erefore, it should be possible to determine a forecast of the net electricity pro�le
of the managed group of buildings one day in advance.

Another application can be to react on �uctuations in the grid, for example
caused by renewable generation, asking for a realtime management. Reacting on
�uctuations requires a realtime control and the availability of su�cient generation
capacity at every moment in time to be able to increase or decrease the consumption
or generation. To achieve su�cient capacity, again forecasts and a planning must
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be determined in advance, in combination with realtime control to react on the
�uctuations. �us, a combination of forecasting of consumption and generation of
devices and a planning of the use of these devices is needed.

Once a planning has been made, the methodology should try to achieve this
planning as good as possible. Deviations from the planning are o�en caused by
forecasting errors. �erefore, the control methodology should not exploit all the
forecasting scheduling freedom during planning to cope with these forecasting
errors. �is can prevent oscillating behavior caused by over-steering and large
�uctuations and peaks in the energy pro�le, e.g. when a large group of buildings
simultaneously react the same on the steering signals.

Furthermore, limitations of the communication links and power lines should be
taken into account. Due to the latency of communication links, sending information
from the local controllers to global controllers and sending the decision from the
global controller back to the local controller requires a certain amount of time.
However, deciding whether it is pro�table to switch on a large consuming device
(e.g. a washing machine) or reacting on �uctuation in generation need to be done
virtually instantaneously. �us, the local controller also has to be able to make these
realtime decision independent of the global controller or these decision need to be
taken on beforehand. More information about the steering signals and network
communication can be found in Chapter �.

Summarizing, the requirements for the control of a smart grid are:

�. local as well as global control and optimizations,

�. specify and strictly obtain a desired pro�le up to �� hours in advance,

�. generic and �exible,

�. scalable,

�. respect the comfort of the residents,

�. limited requirements on the communication links,

�. local controller must be able to work independently.

�.�.� ������� ����

Several control methodologies for distributed generation, energy storage, demand
side loadmanagement or a combination of these can be found in literature. Roughly
these control methodologies can be divided into two groups: �) agent-based market
mechanisms and �) discrete mathematical optimizations. �e advantage of agent-
based market mechanisms is that no knowledge of the local situation is required on
higher levels, only (aggregated) biddings for generation/consumption are commu-
nicated. �e advantage of mathematical optimizations is that the steering is more
direct and transparent, the e�ect of steering signals is better predictable. Another
important di�erence is that in an agent based approach o�en every buildings works
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towards its own objectives where in a mathematical approach the buildings can
work together to reach a global objective.

Most of the research considers agent based control methodologies. �ese agent
based control methodologies propose an agent per device [��]. �e agents give their
price for energy production (switching an appliance o� is seen as production); via a
market principle it is decided which agents are allowed to produce. Since there are a
lot of agents, the information is aggregated on di�erent levels in a hierarchical way.
�e research described in [��] combines domestic generation, consumption and
bu�ering of both heat and electricity. �ey propose an agent based system where
buildings are divided into groups (microgrids) which are loosely connected to the
conventional large-scale power grid. In �rst instance the goal is to maintain balance
within the microgrid without using the large-scale power grid. Furthermore, agents
use predictions to determine their cost function. Field studies show that ��� of
the domestic electricity demand can potentially follow a planned schedule (within
certain boundaries). To reach this potential, there have to be incentives for the
residents to allow some discomfort.

�e PowerMatcher described in [��] and [��] additionally takes the network
capacities into account. �is control methodology is rather mature; it is a product
capable of being used in �eld tests [��]. In these �eld tests, a peak reduction of ���
is reached when a temperature deviation of one degree of the thermostat in the
buildings is allowed. To be able to reach objectives, business agents can be added
that in�uence the biddings in the auction market.

Dimeas and Hatziargyriou [��] compare the results of individual (local) and
overall (global) optimizations. �ey conclude that global optimizations lead to
better results. Next, they claim that agent based control methodologies outperform
non-agent based control methodologies since agent based control methodologies
take more (domestic) information into account.

In literature, also some mathematical control methodologies are proposed. �e
research described in [��] proposes a methodology that is capable to aim for dif-
ferent objectives. For every device a cost function is determined for both heat and
electricity. Using a Non Linear Problem de�nition the optimal on/o� switch pattern
is found. �e authors of [��] address the problems of both agent and non-agent
based solutions: non-agent based solution are less scalable and agent based solu-
tions need local intelligence and are not transparent. �erefore, they propose a
combination: aggregate data on multiple levels, while these levels contain some
intelligence. �e aggregation is done with a database, the control methodology is
rule based. In [��] a control methodology is proposed using stochastic dynamic
programming. �e stochastic part of the control methodology considers the un-
certainty in predictions and the stochastic nature of (renewable) production and
demand. �e authors of [��] propose a control methodology based on Time Of Use
(TOU) pricing, where electricity is cheaper during o�-peak periods. �ey combine
this approach with a domestic wireless sensor network: when a Smart Appliance
would like to switch on, it has to send a request to a controller. �is controller
decides, based on the electricity price and the status of the other devices, whether
the appliance is allowed to switch on. �e TOU pricing can be seen as global steering
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signals, however, it is a rough steering signal which is equal for a large group of
buildings. Furthermore, it is not known in advance what the impact of the steering
signals is.

In [��] a combination of existing tools together with a new developed platform
is used. �e electricity consumption and production per device is forecasted and
using a genetic algorithm the best runtime for every device is determined. �e
platform exists of two levels, a global level for global optimizations sends steering
signals to the local level and a local level control which uses the global steering
signals as input and determines the runtimes based on the steering signals while
respecting local constraints.

�.�.� �������� �� ������

As described above, there are many research projects investigating the optimization
of energy e�ciency. From the mentioned research, simulations and �eld tests
it can be concluded that the e�ciency can be improved signi�cantly, especially
when all three types of technologies (consuming, bu�ering and generating) are
combined. All control methodologies split the control into a local and a global
part, most of them using a hierarchical structure for scalability. Furthermore,
most control methodologies use an online algorithm deciding on device level and
some control methodologies use forecasts to adapt the production and demand
patterns. However, this forecast data is only used on a local level and, therefore, on a
global level hardly any forecasted knowledge is available. �e control methodology
proposed in this thesis adds the predictability on a global level. �is is e.g. required
for electricitymarket trading, insight in the e�ect of choices and, therefore, is related
to dependability.

We chose to use mathematical optimization techniques and a combination
of forecasting, o�ine global planning based on the forecasts and online realtime
control based on the global planning. We use forecasts on a device level to be able
to predict the overall result, planning to estimate and steer the energy pro�le of the
buildings and the grid, and realtime control to respond to changes (e.g. �uctuations
in renewable generation) and work around forecasting errors.

Based on the above considerations, the control methodology consists of three
steps and is split up into a local and a global part: �) local o�ine forecasting, �) global
o�ine planning and �) local online control. Because of scalability reasons, the
global planning has a hierarchical structure and can aggregate data and plannings
on di�erent levels. More information about the hierarchical structure is given in
Chapter �.

Especially the three steps and the global planning di�er from the controlmethod-
ologies described in literature. Furthermore, the control methodology is not agent
based and uses other mathematical optimization methods or heuristics than the
control methodologies described above.

Due to the forecasts and planning in advance, the predictability of the global
electricity streams is improved. �e combination of planning (aggregated knowl-
edge on higher levels) and mathematical optimization result in better dependability
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and the combination of planning and realtime control improves the damage control.
Furthermore, the amount of communication can be limited due to the hierarchical
structure of the planning. Finally, the requirements on the communication medium
is low since the local controller can work independently and a lot of information can
be sent on beforehand without high latency requirements. �erefore, our three-step
control methodology ful�lls all requirements mentioned in Section �.�.�.

�.�.� �����-���� ��������

As described in the previous section, T����� consists of three steps, which are
executed on di�erent levels within the grid. A schematic overview of the three steps
is given in Figure �.�. As shown in Figure �.�(b), at the lowest level we envision a
controller present in the building: the local controller. �e higher level nodes are
planning nodes and are placed through the grid (see Section �.�).

FORECASTING

PLANNING

REALTIME
CONTROL

(a) �ree steps executed on di�erent levels

. . .

. . .

..
.

..
.

..
.

Controller
Communication link

local

global

(b) Hierarchical control structure

Figure �.�: Overview of T�����

In the �rst step of the three-step approach, which is described in more detail
in Chapter �, the local controller learns the behavior of the residents and the in-
�uence of external factor like the weather. Combining this knowledge with the
knowledge about the devices present in the house, the expected energy pro�le and
corresponding possibilities to change this pro�le, i.e. the scheduling freedom, is
forecasted.

In this context all devices which are not steerable are integrated to one device
without optimization potential. Information about these non controllable devices
are required in the control methodology to be able determine the overall energy
pro�le of the building.

�e result of the �rst step is a forecasting and the corresponding scheduling
freedom on a building level. Note that in this step the devices are not controlled yet.
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In the second step, the output of the �rst step is used as input. �e forecasted
scheduling freedom can be used by a global planner to exploit the optimization
potential to work towards a global objective. �e global controller can make use
of the hierarchical tree structure of control nodes, local or global algorithms and
heuristics to optimize the electricity streams in the grid given the objective. In this
way, it can give a prediction of expected electricity streams for the forecast period.

To achieve this, the planner tries to reshape the energy pro�le of the buildings.
Based on the forecasts determined in the �rst step and the desired objective, the
planner determines steering signals for its children nodes to ask them to work
towards the global objective. Each intermediate node in the tree determines steering
signals for its children based on the received steering signals from its parents. Finally,
the building controllers (the leaf nodes) can determine an adjusted pro�le, taking
the steering signals into account. �is pro�le is sent upwards in the tree and when
necessary the root node can adjust the steering signals again. �e planning is thus
an iterative, distributedmethodology led by the global controller. More information
about this iterative, distributed control can be found in Chapter �. �e result of the
second step is a planning for each building for the upcoming day (which can be
described by the used steering signals for this planning) and a prediction of the
resulting global electricity streams.

�e third step uses the steering signals of the planning step as input, in com-
bination with information about the status of the devices in the building and the
grid. In this �nal step, a realtime control algorithm decides at which times devices
are switched on/o�, when and how much energy �ows from or to the bu�ers and
when and which generators are switched on. �e local control algorithm has to take
three di�erent inputs into account while making these decisions. First, it uses the
o�ine steering signals from the global planning. Furthermore, it can use realtime
steering signals of the global controller, based on the status of the grid, to respond
on �uctuations in the grid, e.g. caused by wind farms. Finally, the local controller
has to work around forecasting errors and preserve the comfort of the residents in
con�ict situations. To reach its goals, the local controller can use, next to realtime
optimization algorithms, also local (short-term) forecasts and planning. More
details can be found in [��].

�e combination of forecasting, planning and realtime control exploits the po-
tential of the overall system at the most bene�cial times. �e hierarchical structure
with intelligence on the di�erent levels ensures scalability, reduces the amount of
communication and decreases the computation time of the planning.

As described above, the control methodology is very �exible and the proposed
infrastructure supports di�erent algorithms for the global and local controllers.

�.� E��������

T����� is only one of the many initiatives control smart grids. �e emergence of
energy-e�cient electri�cation of the society and a sustainable supply leads to a lot
of activities from academia, business and authorities. Many projects are started,
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conferences are organized and test sites are built up. In this section a short survey
of a number of programs, alliances and projects is given.

�.�.� �������� ��� ���������

On di�erent levels programs and support initiatives are started. �e Institute of Elec-
trical and Electronics Engineers (IEEE), the world’s largest professional association
for the advancement of technology, organizes many conferences covering all aspects
of the Smart Grid with a focus on both academia and industry. �e IEEE Power &
Energy Society moves its focus more and more towards Smart Grid technologies
and IEEE even started a web portal focussed on Smart Grids�. Furthermore, a new
journal is initiated focussing on Smart Grids, IEEE Transactions on Smart Grids.

A lot of governments provide extra funds for research on Smart Grids and
energy departments more and more focus on Smart Grid. For example, the US
invests nearly � ���million � on Smart Grid technology. Other countries like the UK
� and the Netherlands� have similar programs. On amore global level, the European
Union, the emergence of Smart Grids is also realized. �ey state that for a successful
transition to a future sustainable energy system all the relevant stakeholders must
become involved and coordination at regional, national and European levels is
essential. �erefore, the Smart Grids Technology Platform [��] has been designed
to facilitate this process. Other institutes, like �e International Energy Agency
also published a roadmap, stating that demonstrations of Smart Grid technology is
urgently needed [�].

Probably the largest industrial initiative is the Gridwise Alliance [��], a collab-
oration of companies to realize a Smart Grid, with as mission ‘to transform the
electric grid to achieve a sustainable energy future’. But also on a smaller scale
there are a lot of industrial initiatives, for example Renqi [��], a collaboration of
three Dutch research facilities, the Smart Energy Collective� and the Smart Power
Foundations�.

Furthermore, a lot of projects concerning Smart Grid are ongoing, both on the
technical side as well as on the control side. A lot of projects in Europe are funded
by the European programs FP�–FP� [��, ��]. Next to these European fundings, also
on a national levels a lot of research programs started to fund this research. Example
are the earlier mentioned ���� million of the USA and natural gas pro�ts in the
Netherlands used for Smart Grid research�.

�smartgrid.ieee.org
�www.energy.gov/news/����.htm
�www.decc.gov.uk/en/content/cms/what_we_do/uk_supply/network/smart_grid/smart_grid.aspx
�www.twanetwerk.nl/default.ashx?DocumentId=�����
�www.smartenergycollective.com
�www.smartpowerfoundation.nl
�nlenergieenklimaat.nl

http://smartgrid.ieee.org
http://www.energy.gov/news/8842.htm
http://www.decc.gov.uk/en/content/cms/what_we_do/uk_supply/network/smart_grid/smart_grid.aspx
http://www.twanetwerk.nl/default.ashx?DocumentId=13256
http://www.smartenergycollective.com
http://www.smartpowerfoundation.nl/
http://nlenergieenklimaat.nl
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Asmentioned in the roadmap of the IEA, demonstration projects are very important
to promote developed technologies. Examples of such demonstration projects are
Boulder Colorado, Mannheim-Wallstadt, Meltemi and Powermatching City. In
Boulder Colorado a Smart Grid City [��] is implemented with as goal to incorporate
���� households in the Smart Grid project. �e Smart House project[��] is a FP�
funded research project with as goal to demonstrate how ICT can help to achieve
maximum energy e�ciency. In the project ��� houses in Mannheim, Germany
are connected to each other with as main goal to supply washing machines with
electricity produced by PV panels. Within the same project, on the Greece island
Meltemi, on a camping site PV panels and a diesel generator are installed to reach
islanded operation of the camping site. �e Powermatching City project [��] in
Groningen, the Netherlands, is a testbed for the PowerMatcher[��], an optimization
algorithm developed by the Energy Centrum Nederland (ECN). In this project
houses are equippedwith smart devices and a local controller to test the optimization
abilities of the PowerMatcher algorithm. In [��] the results of creating a real VPP
with micro-CHP appliances to reduce the load on the distribution network using
the PowerMatcher are given.

�.� C���������

Changing circumstances ask for a renewed electricity grid to maintain an a�ordable
and reliable supply, to shi� towardsmore sustainable generation and to keep up with
the electri�cation of the energy supply. Since the lifetime of a lot of elements in the
electricity grid comes to an end, now is the time to implement a smarter grid. �e
renewed electricity grid should support distributed (sustainable) generation and
should be able to supply the growing demand of electricity. To reach this, consumers
have to change from passive consumers to active prosumers, cooperating with
each other. Furthermore, plant/grid operators need to maintain grid stability and
reliability under the changing circumstances. However, to reach this, a number of
technical, economical, legislative and ethical challenges have to be tackled. For the
technical challenges, ICT is one of the key technologies. Essential in a Smart Grid is a
monitoring andmanagement system that monitors andmanages all parts of the grid,
from central generation and large scale renewable generation, via transportation
up to consumption/generation at the consumers on device level, in a cooperative
way. One of the possible smart grid management methodologies is T�����. T�����
consists of three steps and is split up into a local and a global part: �) local o�ine
forecasting, �) global o�ine planning and �) local online control. T����� is only one
of themany initiatives to investigate themanagement of smart grids. �e emergence
of smartening the grid and updating the electricity supply chain is emphasized by the
numerous initiatives worldwide from the European Union, governments, industry
as well as from the academic world.
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A������� – In this chapter the �rst step of the three step methodology, the
forecasting step, is described. Forecasts are used to determine the scheduling freedom
of a device. �erefore, for each individual device a forecast is made, since device
speci�c information and restrictions are required in the planning and control of the
device. Due to the enormous amount of devices in the grid, each with individual
information, restrictions and environment, the forecasting is performed for each
individual building by a local controller. �is results in a scalable system, since
no information about the device and the environment needs to be communicated
and the required computational power required for forecasting is distributed. By
performing the forecasting locally, local building/resident speci�c characteristics can
be taken into account. �is can improve the prediction quality. Furthermore, since
the environment of a device may not be static due to the stochastic nature of the
residents, local information can be used to adapt to changes. By using locally har-
vested data, a fully autonomous forecasting system without direct interaction with
the residents can be built. As an example of the forecasting system, the forecasting
for a micro-CHP appliance is researched in more depth in this chapter. Here, local
information like historical heat demand and weather information are considered as
good candidates to be used as input data for the heat demand forecasting. Multiple
representations of these in�uence factors have been analyzed. In the last part of
this chapter, a simulated annealing method is presented, which has been used to
determine good representation of the in�uence factors and other forecast model
parameters.

As mentioned in Chapter �, the electricity demand can roughly be divided into
three parts. �e largest part is the more or less regular base load, mainly in�uenced
by the season. On top of the regular base load there are speci�c �uctuations caused

Parts if this chapter have been presented at [VB:�] and [VB:�] .

��
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by the day to day behavior of the consumers. �e smallest part of the electricity
demand is the electricity needed to keep the grid stable and functioning properly.

In many European countries, for each of these parts of the total electricity
markets exist on which electricity can be traded. In long term contracts the base
load is traded, which is roughly ��� of the total electricity demand. Since this
base load is more or less �xed and easy to predict, the prices of electricity in these
contracts are low.

�e other ��� of the electricity demand is traded on short-term markets like
the day-ahead market and the balancing market. On these markets, electricity
demand and production of the upcoming day / quarter of an hour are traded. For
this, forecasts are made of the expected energy consumption. Electricity retailers
try to make good forecasts about the expected electricity demand of their customers
and power suppliers use forecasts to optimize the control of the power plants, and to
purchase their fuel. On the day ahead market, energy is traded �� hours in advance,
based on forecasts of the expected electricity consumption. Energy traded on the
day-ahead has to be delivered/consumed exactly as speci�ed in the contract made
on this market. Deviating from the agreed electricity production/consumption
results in a shortage/surplus of electricity, which can cause instabilities in the grid.
�erefor, every deviation from the agreed electricity pattern is penalized by a central
authority.

�e agreed electricity patterns are based on forecasts, which are in general
imperfect. As a result, deviations from the agreed energy pattern are normal. To
stabilize the grid, balancing power is required, which is traded on the balancing
market. �is small part of electricity demand needed for balancing is only known a
short time in advance or in the worst case when the customers have already switched
on their devices. Due to the short time between purchase and delivery of electricity
on this market, and thus necessary capacity reservations, prices are very high. Once
electricity is purchased on this market, the agreed electricity must be delivered
within a couple of minutes.

�e introduction of Smart Grid technology enables the possibility to achieve a
better matching between demand and supply. Electricity producers and consumers
can cooperate together to adjust their production/consumption pattern to keep
the electricity network stable. For example, some devices of consumers might have
adjustable or shi�able load, e.g. a freezer might actually be turned on a little bit
earlier to consume a surplus of electricity. Or a washing machine might use a
little bit less electricity to heat up the water. If a large group of devices located at
consumers can be controlled, the energy consumption of a part of the total energy
consumption can be controlled. Considering that households use ��� of the total
electricity consumption in the Netherlands [��] and that ��� of this consumption
can be shi�ed in time [��], controlling a large group of devices has a signi�cant
potential. �is �exibility in the usage of the devices can be exploited on the short-
term energy markets (balancing/day ahead), giving this control quite some value. If
devices in other kinds of buildings, like in o�ces, can also be shi�ed/altered, even
a bigger part of the total electricity pro�le can be altered.

In order to adjust the consumption pattern of households by controlling the
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devices, the device status and their possibilities to shi�/adjust their consumption
pattern, i.e. their �exibility, must be known in advance. Reusing the freezer example,
it might be bene�cial to reduce the electricity consumption, by switching o� the
freezer for a certain period time. �is is only possible if the temperature inside the
freezer allows this, more precisely by keeping the freezer o� the temperature must
be kept below the required maximum temperature during the whole period. Based
on the characteristics of the freezer, like insulation and power consumption, and
the expected interaction of the residents with the freezer, the possibilities of the
freezer for altering the consumption pattern can be determined. �is freedom in
controlling the freezer is called the scheduling freedom.

To determine the scheduling freedom, device speci�c information and the
expected interaction with the device’s environment are required. For this reason,
forecasts for a controllable appliance with scheduling freedom are made. �e rest
of this chapter is about the forecast methods to determine the scheduling freedom.
First, the requirements of the forecasts are given. �en, the related work is given in
Section �.�. In Section �.� the chosen approach is given. A general description of
the forecasting model is given in Section �.�. In Section �.�multiple approaches
for individual heat demand forecasting to determine the scheduling freedom of
a micro-Combined Heat and Power (CHP) are given. We �nalize this chapter by
describing a search method to determine adequate parameters for the forecasting
model.

�.� R�����������

Based on forecasts, which is the �rst step in the three step approach described
in Chapter �, the scheduling freedom of individual devices is determined. In the
second step, this scheduling freedom of devices is used to plan the runtime/control
of the appliances to reach a certain objective. In the last step, based on the planning
made in step two and, when necessary new forecasts using more recent information,
the devices are controlled to achieve the objective.

Key in this approach is the autonomy of the whole system. �e system should
just work, without any intervention of the users. Furthermore, the system should
be scalable. Since eventually each device is controlled individually, a forecast per
device is required. �ere are millions of devices connected to the grid, each with
their own device-speci�c constraints and placement within their own environment.
�e system should be able to make forecasts for this large group of devices to exploit
the available scheduling freedom of this large group of appliances. Preferably, the
device-speci�c constraints and environment should be taken into account while
forecasting, assuming this improves the quality of the forecasts.

Another important aspect of the forecast is the timespan of the forecast and
the time the forecast must be available. When the forecast is required in the last
step, the real time control of the device for the next hour, the forecast only has to be
available just before making a control decision. However, when using the system to
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control a large group of devices to act on the day-ahead market, the forecast of the
whole next day must be available one day ahead.

When making a forecast for a device, the environment in which the device is
placed is very important. However, this environment may not be static. When a
device is used intensively by the residents of a building, information about this
usage is important. However, human behavior might change, and this change
should be taken into account when generating a forecast. �ese changes can be
caused by many factors, e.g. the season of the year or changes in habits of the
residents. �e forecasting system should be able to adapt to these changes. It should
periodically evaluate the quality of the forecasts and perhaps adjust the forecast
model to incorporate recent changes, e.g. when a family is on holidays.

Summarizing, the system responsible for the forecasts should ful�ll the following
�ve requirements:

�. Generate forecasts for each individual device: device speci�c information is
required in order to control the device.

�. Be scalable: the Smart Grid contains a very large group of devices.

�. Work for di�erent timescales: the system must be able to make forecasts at
least one day ahead, but also a few hours ahead.

�. Run autonomously: the systemmust be running on its own, without requiring
interaction with the residents of the building.

�. Be adaptable to changes: the environment of the device may not be static and
relevant changes in the environment should be dealt with.

�.� R������ ����

As described above, forecasting is very common in the energy supply chain. Ac-
curate load forecasting has a great potential for electricity producers. Bunn and
Farmer [��] claimed in ���� that one percent increase in load forecasting error
in the British system resulted in a loss of ��million pounds per year. Due to the
economical impact of good electricity demand prediction, a large amount of re-
search has been performed in this topic. During the years, a lot of methods for
demand forecasting have been analyzed. According to an overview of Alfares and
Nazeeruddin [�] the techniques can be categorized into nine categories: (�) multi-
ple regression, (�) exponential smoothing, (�) iterative reweighted least-squares,
(�) adaptive load forecasting, (�) stochastic time series, (�) Autoregressive moving
average with exogenous variable models based on genetic algorithms, (�) fuzzy
logic, (�) neural networks and (�) expert systems. Furthermore, a trend towards
fuzzy logic, genetic algorithms, expert systems and neural networks can be seen.
Comparative studies showed that fuzzy logic and neural networks outperform the
autoregressive models. Based on these reasons, and the requirements set in the
previous section, neural network techniques are used in this work.
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In the use case of theVirtual Power Plant (VPP), the scheduling freedomofmicro-
CHP appliances needs to be determined. �is scheduling freedom is determined by
the heat demand of the household and the heat bu�er connected to the micro-CHP.
�erefore, heat demand forecasting on a individual level is required. Although
electricity load forecasting is a well studied topic, heat demand forecasting research
has been limited. Dotzauer [��] describes a heat demand prediction for large scale
systems. �e presented model forecasts the load by combining two functions. �e
�rst function is a (piecewise) linear function used to determine the in�uence of
the weather and uses outdoor temperatures as input. �e second function is used
to describe the social factor and is modeled as a constant (total load − weather
dependent part). During training, the best combination of the two functions is
searched.

Serban and Popescu [��] describe a heat demand prediction for district heating
systems using times series analysis. A time series can be described as output of
a system that has as input a white noise signal. �e output consists of a (linear)
combination of observed data (history) and the present input.

In the work of Nielsen and Madsen [��] the heat consumption in a district
heating system is forecasted. In this work, the theoretical knowledge of the system
is combined with measurements performed on the system to determine a mathe-
matical description of the system. �e heat load is forecasted using meteorological
forecasts and the developed mathematical description.

Similar to the forecasting of heat demand is the forecasting of cooling load.
Ben-Nakhi and Mahmoud [��] describe the forecasting of the cooling load of a
building using neural networks techniques by using hourly temperatures as input
for the network. Yao et al. [��] forecast the hourly cooling load using a combination
of multiple forecasting techniques.

Common in related work mentioned is that the forecast of load is made for
large systems, not individual households. Forecasting heat demand for individual
buildings still is a unexplored �eld of research. In contrast to forecasting individual
heat demand, in many studies models of houses and buildings have been made
to analyze the impact of the energy demand on the whole system. In the work of
Heller [��] the heat-load is modeled for large system, in which the heat demand
is divided into multiple elements: space heating, domestic hot-water preparation,
distribution loss and additional work-day loads. By combining models of each
element, a overall model for the total heat load of a district-heating is generated.

A method of formulating the energy load pro�le of a domestic building in the
UK is described by Yao and Steemers [��]. �is energy pro�le comprises both heat
and electricity, where ��� of the energy-consumption was used for space heating
and ��� for domestic hot water. �e pro�le is mainly determined by behavioral
and physical components. �e behavioral component is de�ned as the habits of
the occupants of a building, which is slightly in�uenced by season. �e physical
component comprise the climate, the physical properties of the building like size
and design. Here, multiple types of houses and occupants habits are used to model
the heat load using a thermal resistant model.

�e potential saving of using a micro-CHP appliance in the house is analyzed by
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Pearce et al. [��]. Here, the heat load is modeled using a ‘house thermal equivalent
circuit’. Using this circuit, consisting of thermal constants of a house (information
about how heat �ow of and within the house), the outside temperature and the
desired room temperature, the heat load of the building is determined.

In the work of Pearce et al. [��], no behavior pattern is taken into account for
modeling the heat load of a building. �is is in contrast to Lampropoulos et al.
[��], in which the importance of including behavior of small prosumers in power
system planning is stressed. In their modeling methodology a combination of
deterministic (devices operation), probabilistic (user groups, user behavior) and
stochastic models (weather and external parameters) are used. Studies in the US,
�e Netherlands and the UK show that ��-��� of the domestic energy end-use
variations is due to the behavior of the residents [��].

�.� A�������

As described in Section �.�, the forecast system should be scalable and capable of
forecasting data for each individual device. One may chose to do the forecasting
for each device centrally to be able to use similarities between consumers. However,
such an approach is not really scalable. Above a certain �eet size a central system
may get too ine�cient. Furthermore, in most of the cases there are consumer
speci�c characteristics which may be worthwhile to integrated in a forecasting
scheme. In a central approach this requires a lot of communication, again resulting
in scalability and privacy problems.

If we integrate the forecasting system into a local control system located in
a house, local individual information can be incorporated. �e information for
adequate forecasting can be harvested locally. For example, human behavior has a
big impact on the energy usage of a household. Although there are some similarities
between households, still each household has its own habits and characteristics.
External factors like insulation of the house, required comfort levels of the residents
etc, can be di�erent for each household. Assuming that the local control system
continuously measures the electricity �ow of each device, historical energy demand
patterns containing information about this speci�c household can be generated.
Other relevant information, like for example weather information, can be collected
locally or perhaps downloaded from a central authority or the internet. By contin-
uously collecting the required information locally, the quality of the information
increases.

Another advantage of continuously collecting the required information locally
is that changes in the environment are present in the collected data. When necessary,
the forecast scheme can reevaluate the forecasts and can, when necessary, adjust
the forecasting scheme to �t better to recent changes in the household.

Furthermore, when using the local approach the information does not need to
be transmitted to a foreign system, which improves both scalability and privacy
issues of the smart grid.
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Another strong point of using individual forecasts and the three step opti-
mization methodology is that when the overall system breaks down, a fallback
mechanism can be build in. For example, if the local controller is part of a Vir-
tual Power Plant or a micro-grid, where the local controller cooperates with other
local-controllers in other buildings and perhaps a grid/�eet controller, and for some
reason there is (temporarily) no communication possible, the local controller can
still use the local forecast for a local optimization objective, such as peak shaving.

Summarized, a local forecast improves both privacy, scalability and the quality
of the information required tomake a good forecast. �e processing power available
in a local controller can be exploited since the forecasting so�ware runs on each the
local system instead of centrally. Sincemost required information is gathered locally,
less information needs to be transmitted by the local control systems. Furthermore,
the information contains household speci�c details which may be required for
certain devices. In case of communication failure within the smart grid, a fallback
mechanism can be enabled, using the local control system for local objectives.

�.� F���������� �����

As described in the previous section, for each device forecasts aremade to determine
the scheduling freedom of the device. What needs to be forecasted is dependent
on the device (requirement �). �e function of the forecasting model is to generate
expected data of future events, based on the information currently available and
information from the past. �e forecasting model of a device can be seen as a
function F(I ,Fp) → O, where I is the input for the forecast model, Fp are the
forecast model parameters andO the forecasted output values.

Function F should map the input I to the output O. However, in general
this mapping is unknown and must be estimated. Furthermore, as described in
the previous section, the mapping might change over time since the device or the
environment of a device can change as well (requirement �). On the one hand, the
changes can be present in the input I . But on the other hand, the relation between
I and O can change as well. Since the system should be running autonomously
(requirement �), the forecasting system should be able to learn this relation with-
out any intervention of the residents. And since the relation between the input
and output might change over time, the system should periodically evaluate the
performance of the predictions and perhaps relearn, incorporating recent changes.
While relearning, a good trade o� between focusing toomuch on recent (incidental)
changes and learning real consistent changes in the environment must be made.
Furthermore, it may be necessary that the model has to relearn o�en. Since the
(re)learning process is executed on a local controller, which is expected to be a
power e�cient device which little computational power, the learning process cannot
be too computational intensive.

In this work neural network techniques are used as a mapping function. Neural
networks are simple, robust, and fast models which can learn, based on given train-
ing examples, (non-linear) relations between the input and the output. �e learning
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process can be self-supervised, i.e. without human interaction. By periodically
relearning the neural network, the forecasting model is adaptive to changes.

w�k
w�k
. . .
. . .
wnk

y�
y�

yn

sk = ∑wjk y j + θk

Neuron k

Ak(sk) yk

θk

Figure �.�: A single processing unit of a neural network

Neural networks, as described in [��], are computational models based on
biological neurons. �ey are able to learn, to generalize, and to cluster data. �eir
operation is based on parallel processing. A neural network consists of a pool
of simple processing units, which communicate by sending signals to each other
over a large number of weighted connections. An example of a processing unit,
called a neuron, is depicted in Figure �.�. Each neuron basically performs one task.
It receives inputs from neighbors and computes an output signal, based on the
received inputs, which is propagated to other neurons.

Within the neural network three types of neurons exists: input neurons which
receive their input from outside the network, output neurons which send data out of
the network and hidden neurons whose in- and output remain inside the network.
Neurons are connected to each other via weights wjk , which determines the e�ect
of a signal of neuron j on neuron k. �e total input of neuron k normally is simply
the weighted sum of the separate outputs of the neurons connected to k plus a bias
or o�set θk , but other propagation rules exist [��].

�e activation functionAk of neuron k determines the new level of activation
(the output) based on the e�ective input sk . �ere are many possible activation
functions, but generally some sort of threshold function is used. Examples are
hard threshold functions, like shown in Figure �.�(a), a semi-linear function (Fig-
ure �.�(b)) or a commonly used smoothing limiting function (Figure �.�(c)). �e
goal of the threshold function is that the arti�cial neuron, similar to biological
neurons, only �res a�er receiving su�cient stimulus from other neurons.

�e ‘knowledge’ of a neural network is present in the weights w in combination
with the activation functions. Using the weights and the activation functions, the
neural network approximates a desired function. A neural network is con�gured
such that the application of the neural network to a set of given inputs produces the
desired outputs (which are also given), i.e. the right weights in the neural network
are set. If a priori knowledge is available, this can be used to pre-specify the weights
and chose the appropriate activation functions. If this is not the case, the desired
function must be determined in the form of learning.
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Figure �.�: Possible activation function

�e learning process consists of given examples of input and output pairs for
the neural network. �e idea is that the required mapping function is present in
the example data and that by providing su�cient examples to the neural network
the neural network itself is capable of learning this correct mapping. �ere are
many learning algorithms, but the basic principle is to adjust the weights of the
hidden neurons. �e weights in the hidden neurons must be adjusted such that the
application of the neural network to the inputs gives the correct response, i.e. the
output of the neural network is equal or as close as possible to the example outputs.
By adjusting the weights according a certain training rule, it is tried to minimize
the error between the network output and the expected output.

A neural network can only properly learn if the example input/output pairs
during the training phase contain enough information of the function to be learned.
If the examples during the training phase are not representative for the problem, a
wrong relation between the input/output can be learned. Generally, when training
a neural network, the whole set of example is divided into three subsets: a training
set, a validation set and a test set. �e examples are o�en divided randomly to get
a good distribution of the examples over the set. �e training set is used during
the training phase, which can consists of multiple iterations of altering the weights.
During training a general mapping applicable to all the examples should be found.
However, it may be possible that instead of �nding a generally applicable mapping,
over�tting occurs. In the case of over�tting, a mapping too speci�c for the given
examples is learned. �erefore, the validation set is used a�er each learning iteration
to detect over�tting. A�er each iteration, the neural network is tested against the
validation set. If a�er a training iteration the performance of the neural network
on the validation set decreases, the training process gets too much focussed on
the examples in the training set. In other words, the training algorithm is applied
as long as the performance of the neural networks on both the training set as the
validation sets keeps improving. A�er training, the test is used to analyze how
general the trained neural network is, i.e. how well the neural network performs
on samples which where not using during training. �erefore, the test set contains
examples which were not used during training.
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Figure �.�: Example of used network structure in the prediction model using ��
hidden neurons.

In our approach we use a multi-layer feed-forward network (see Figure �.�).
Each layer consists of neurons which receive their input from a layer directly in
front (le� in the �gure) and send their output to a layer directly behind (right in the
�gure). �e layers in between the input and output layers are called hidden layers,
where the neurons in a hidden layer are referred to as hidden neurons. �ere are
no connections between neurons within the same layer. �e �rst, most le� layer,
performs no computation but only distributes input, and this layer is therefore
not counted as a layer. �e example given in Figure �.� is thus a two-layer feed-
forward neural network. Important parameters when using feed-forwarding neural
networks is the number of layers used and the amount of neurons present in each
layer. �e amount of layers/neurons required can be very speci�c for the problem
and is o�en determined by starting with a relatively small network, i.e. with only
two layers and a low number of hidden neurons. �e neural network is then trained
and the performance of the neural network is determined. �is process is repeated
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a�er adding one or more hidden neurons to the neural network. �is continues as
long as the overall performance of the new neural networks keeps improving. To
prevent getting stuck on a local minima while determining the proper network size,
one can choose to test a limited amount of larger networks and see wether these
larger networks all perform less than the current neural network.

�.� R������: H��� D����� F����������

One of the use cases of the three step approach is the creation of a Virtual Power
Plant consisting of a large group of micro-CHP appliances. A micro-CHP appliance
is a system that consumes natural gas and produces heat and — as a by-product
during the heat production — electricity. It generates electricity at the kilowatt
level, allowing these units to be installed in an individual house. �ey can be
connected directly to the domestic heating and electrical systems, which leads to a
very high e�ciency (up to ���) in usage of primary energy. �e heat is used for
the heat demand in the home such as central heating, showering, hot water taps
etc. �e electricity can be used in the home or, when not needed, be exported to
the electricity distribution network. When a micro-CHP appliance is connected
to a heat bu�er, the periods in which heat, and thus electricity, is produced are
decoupled from the moment the heat is consumed. Ultimately, the control of a
micro-CHP can be shi�ed from a heat demand driven to electricity demand driven
control scheme, within the limits set by the heat demand and the heat bu�er.

For a Virtual Power Plant consisting of many micro-CHP appliances, the heat
demand of the households determines the amount of electricity that can be pro-
duced. Considering that on average in the European Union ��� of the household
energy consumption goes to heating and ��� to hot tap water [�], quite some heat —
and thus electricity— can be generated using a micro-CHP appliance. When a heat
bu�er is installed in the house, a lot of scheduling freedom is available. �is makes
a micro-CHP appliance a good candidate to be used in a VPP. Based on the expected
heat demand, the bu�er characteristics like dimension, loss and State of Charge,
a schedule for the runtimes of a micro-CHP can be derived. �ere are in general
many valid schedules of a micro-CHP providing all the heat demand. However,
some may be more bene�cial than others and, therefore, a most bene�cial runtime
for a micro-CHP can be searched for. In order to determine the scheduling freedom
of a micro-CHP, the expected heat demand for the coming day must be forecasted.

�.�.� �������� �����

In �rst instance, we are interested in the heat demand for the upcoming day, since
in the second step of T����� a planning for the day ahead market is needed. For a
good planning it is preferable to forecast the heat demand as accurately as possible
(in the order of minutes). However, the amount of information available to us is
not enough to give such an accurate forecast. For this reason, we forecast the heat
demand on an hourly basis. Furthermore, it is questionable if a reasonable forecast
for smaller time units is possible �� hours ahead.
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To incorporate the di�erences in human behavior on di�erent days in the week,
we use a neural network for each weekday. It might be the case that for some
weekdays the important in�uence factors and the amount of their in�uence di�ers
from other weekdays. As a consequence, the amount of required neurons might
be di�erent as well. By using a di�erent neural network for each weekday, these
di�erences can be dealt with.

�e neural networks used consists of two layers (the input layer, one hidden
layer and the output layer). �e reason for this is to keep the neural networks simple.
For the hidden layer, the best network size (number of hidden nodes) is determined
as described in Section �.�.

�.�.� ����� ���������

To set up a neural network to predict the expected heat demand, we must analyze
the factors that may have in�uence on this heat demand of a household. �e
forecasting model should learn the relation between these in�uence factors and
the heat demand. Examples of such in�uence factors are the size, insulation and
location of a house. �e combination of these tree factors determine howmuch heat
is needed to reach and keep a certain temperature in a house for central heating.
Other important factors are the thermostat program, the required temperature in
the house, the amount of residents and their behavior. Residents staying at home
during the daymeansmore central heating demand and a larger number of residents
also means more required hot tap water demand.

Another important factor is the weather. During winter more central heating is
required. When the outdoor temperature is low and there is a strongwind, especially
old houses without double glazing and bad insulation loose a lot of their heat. �ere
may be many other in�uences, but the most relevant factors can be roughly divided
into three categories: house, human behavior and weather [��].

Since houses do not change that o�en, we may consider the characteristics of
the house static. Because of this, the neural network should be able to learn the
characteristics since they are present in the data used.

For the behavior factor, information about the thermostat program and user
overwritten settings might give important data. However, we assume that the
thermostat program is �xed and thus can be learned by the system. If the thermostat
program is not �xed, it is dependent on the behavior of the residents and cannot
be determined on before hand. Other information about the user, for example
holidays, is not used since this requires interaction with the user. Although it
might be possible to use information, such as electronic agendas, it also introduces
additional issues like privacy. �erefore, this addition is le� for future work.

We aim for a system running autonomously. Furthermore, people have di�erent
behavior on di�erent days on the week and their behavior changes in time. Changes
in behavior should be learned quickly in order to cope with changes like holidays.

To learn the behavior of the residents, historical heat demand data is used.
In the test set-ups used in this research, four households were equipped with a
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WhisperGen� and a ��� liter heat store. �is heat store is used for both central
heating demand and hot tap water. To determine the heat demand of these houses,
status information of the heat stores and installed micro-CHP appliances of these
houses, kindly made available by Essent and GasTerra (two local energy companies),
were used. For each household, the status of the heat store and the micro-CHP
appliance were monitored on a minute basis for roughly one year, starting around
the beginning of the year ����. From this information, the heat demand for these
four households is derived by combining the micro-CHP appliance status and the
changes of the tank levels. Since the micro-CHP units were used for testing, some
gaps in the measurements data occurred. All days with less then ���� of the total
����measurements are �ltered out and not used as input for our model.

For the weather, outdoor temperatures and information about wind and sun can
be used. Information about temperatures and wind speeds can be obtained from
weather stations nearby the households. �ese weather stations output Meteorolog-
ical Aerodrome Reports (METAR) every half hour, from which the temperatures and
wind speeds are extracted. When deploying the prediction system, the half hourly
weather information is of course not available yet and forecasted values must be
used.

�e output of the predictionmodel is the expected heat demand for the next day
on an hourly basis. More �ne grained prediction of the expected heat demandmight
be wanted, but given the available input data we think this hourly heat demand
prediction is a good tradeo� between accuracy and the quality of the information.
�erefore, the neural network consists of �� output neurons, one for each hour of
the day.

�e possible inputs I for our prediction model have to be selected from all
possible inputs Ipos, which consists of historical heat demand data H, outdoor
temperatures T and wind speed informationW , i.e. Ipos = H�T�W .

�e historical heat demand data set H consists of hourly heat demand data of
recent days Hn (n ∈ {−�,−�, . . . ,−�,−��}), where n is the number of days relative
to the the day that is being forecasted. For example, H−� is the hourly heat demand
data the day before the day this is being forecasted.

For information about the weather only very recent information is used. It is
expected that for example the weather information a week earlier is not related to
the expected heat demand. �erefore, only the (forecasted) outdoor temperatures
for the to be forecasted day and the outdoor temperatures one day before the to
be forecasted day are used. �ese temperatures can be represented in di�erent
ways, i.e. per half hour, per hour etc. �erefore, three di�erent representation of
outdoor temperatures are used. �erefore, the above mentioned set T with the
possible outdoor temperatures consists of Tn ,t , where n (n ∈ {�,−�}) is the number
of days relative to the day to be forecasted and t (t ∈ {mm, ��, ��}) is the chosen
representation of the weather. If t = mm, only the minimum and the maximum
outdoor temperatures are used. For t = �� and t = �� the temperatures per half

�http://www.whispergen.com

http://www.whispergen.com
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Table �.�: Possible inputs for a day

Input Description

H−1 Hourly heat demand 1 day earlier
H−2 Hourly heat demand 2 days earlier
H−3 Hourly heat demand 3 days earlier
H−4 Hourly heat demand 4 days earlier
H−5 Hourly heat demand 5 days earlier
H−6 Hourly heat demand 6 days earlier
H−7 Hourly heat demand 7 days earlier
H−14 Hourly heat demand 14 days before Dn
W0,mm �e forecasted minimum and maximum windspeed
W0,30 �e average forecasted windspeed (per half hour)
W0,60 �e average forecasted windspeed (per hour)
W−1,mm �e minimum and maximum windspeeds 1 day earlier
W−1,30 �e average windspeed (per half hour) 1 day earlier
W−1,60 �e average windspeeds (per hour) 1 day earlier
T0,mm �e forecasted minimum and maximum temperatures
T0,30 �e average forecasted temperatures (per half hour)
T0,60 �e average forecasted temperatures (per hour)
T−1,mm �e minimum and maximum temperatures 1 day earlier
T−1,30 �e average temperatures (per half hour) 1 day earlier
T−1,60 �e average temperatures (per hour) 1 day earlier

hour and per hour respectively are used. �e set of possible windspeed inputsW is
constructed in a similar way as T . A complete overview of Ipos is given in Table �.�.

As described in Section �.�, a neural network has to be trained and the available
training data is separated into multiple sets to function as training and validation
data. O�en this separation is done randomly.

In case of the heat demand prediction, the reason for choosing a random set
for training is to make the prediction more general and to �nd as much behavior
as possible. However, in case of human behavior and seasonal weather data, this
might not be the best choice.

Instead of using randomweeks of the whole data set, only a limited subset could
be used for a training set. Using this limited subset, a good tradeo� between �nding
general behavior and recent behavior can be made. �is implies that each day,
(re)learning is required using information of the last weeks. �erefore, a ‘sliding
window’ [�] is introduced, were only data from the last weeks is used while training
the neural network. By using this sliding window, more recent behavior is used to
learn the behavior of the residents. �is makes the prediction model more �exible
and adaptable. Furthermore, we expect that behavior may change during the year,
and that current behavior resembles more to the recent behavior instead of general
behavior during the whole year.
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One important decision to make while using the sliding window approach is
how many weeks of history should be used for training. Adding more weeks might
give more information about the general behavior, but this can cause ‘too general’ or
outdated behavior. Using too few weeks can cause over�tting to the recent behavior,
missing the general behavior people might have on a certain week day.

�e addition of a sliding windows also introduces the possibility to use di�erent
input for each day that has to be forecasted. As described above, it might be the
case that due to changes in the environment, other in�uence factors become more
dominant while forecasting the expected heat demand. In this work, the same input
set is used for all the evaluated days. Using di�erent input sets for each individual
day that is evaluated is le� for future work.

�.�.� ����������� �������

Once the networks are trained, we have to determine the performance of the neural
network. As the heat demand forecast is used to optimize the runtime of a micro-
CHP, two factors are important. First, the forecasted heat demand pro�le for the
day should be as close to the actual heat demand as possible. In other words,
the amount of heat demand and when the heat demand peaks occur should be
predicted accurately, since these are important in�uence factors on the runtime
of the micro-CHP. For this reason, the Mean Absolute Percentage Error (MAPE) is
used as a quality measure for the forecast. �e MAPE, as given in (�.�), gives the
mean absolute deviation of the forecasted values from the actual values over all
days for a given house. �is error can be used to express how ‘well’ the forecasted
heat demand is matched with the real heat demand. In (�.�) Dh denotes the set of
days that are forecasted for a house h,O = F(I ,Fp) denotes the forecasted values
andA the actual values of the heat demand.

MAPE =
�

���Dh �
�

d∈Dh

��
�
t=�
�Od ,t − Ad ,t �

Fd ,t
(�.�)

Fd ,t = �
Ad ,t , if Ad ,t ≠ �
�
�� ∑

��
t̂=� Ad , t̂ , otherwise . (�.�)

�e second important factor is the deviation from the actual total heat demand,
which should be predicted accurately. If for some reason a heat demand peak is
forecasted an hour too early, it is still important that the volume of the forecasted
pro�le is correct since we should be able to produce enough electricity. To express
this, the Mean Percentage Error (MPE) is used, which is de�ned as

MPE =
�

���Dh �
�

d∈Dh

��
�
t=�
Od ,t − Ad ,t

Fd ,t
,

where Fd ,t is given by (�.�). For example, a positive MPE means that the prediction
model forecasted a higher total heat demand than the actual heat demand.
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Since both errors are important, they are both used to determine the perfor-
mance of a network. We have chosen to determine the error for a network via

Etotal = MAPE + �MPE�.

�.�.� �������

For the �rst computational test we used as input for our prediction model an input
vector which consist of three groups of data: (a) the heat demand of the previous day
(�� values), (b) the heat demand of the same day one week earlier (�� values) and
c) the average (predicted) temperatures per hour of the day (�� values) (see Figure �.�
on page ��) [�]. More formally, the input set of speci�ed by I = {H−� ,H−� , T�,��}.
H−� was selected since it is expected that there is a regularity in the behavior
of the residents on each weekday. For example, more people are at home on a
Wednesday a�ernoon since then the schools are free. H−� is chosen since there
is a strong relation between the heat demand of the current day and a day earlier.
�e temperature was added to I since it is expected it is an important factor that
in�uences the heat demand.

To determine the best model parameters, i.e. the the amount of hidden neurons,
given the selected I , all combinations of network sizes, weekdays and households
in our database have been trained using the Fast Arti�cial Neural Network library
[��]. While training, the mean squared error was minimized using the RPROP [��]
training function, where a sigmoid activation function was used.

Table �.�: �e number of days present in the validation sets

House Sun Mon Tue Wed �u Fri Sat Total

1 21 21 18 20 19 21 23 143
2 19 18 17 18 18 18 18 126
3 17 18 17 18 17 18 18 123
4 13 13 11 12 13 14 14 90

As mentioned above, the database with heat demand data contained some gaps.
�e number of days of the validation sets a�er �ltering are given in Table �.�.

�e results of the initial approach are given in Table �.�. We can see that the
heat demand of some households is more di�cult to forecast than the demand
of other households. For example, household � is the easiest to forecast. �is
household probably has a very regular heat demand, probably due to a very �xed
thermostat program and good insulation. Another interesting observation is that
for this household Saturdays show signi�cantly less performance than the other
days. Analyzing the MPE column for each weekday in Table �.�, all the prediction
models have a positive MPE value. �e predictionmodel thus always predict a higher
total heat demand with respect to the actual values. Again, household � shows the
best performance.
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Table �.�: �e Mean Absolute Percentage Error and Mean Percentage Error of the
initial results

H Sun Mon Tue Wed �u Fri Sat
MAPE MPE MAPE MPE MAPE MPE MAPE MPE MAPE MPE MAPE MPE MAPE MPE

1 1.96 1.16 2.59 1.81 6.04 5.43 2.13 1.22 2.64 1.88 1.18 0.26 2.75 1.97
2 1.57 0.73 2.10 1.16 2.30 1.57 3.95 3.27 2.39 1.61 3.48 2.65 4.62 3.98
3 0.54 0.03 0.56 0.16 0.46 0.10 0.55 0.10 0.50 0.08 0.53 0.13 5.40 5.17
4 1.09 0.17 3.42 2.84 1.22 0.35 2.36 1.75 1.54 0.63 2.49 1.68 1.39 0.60

��/�� ��/�� ��/�� ��/�� ��/�� ��/�� ��/�� ��/��
�

�
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H
ea
tL
oa
d
(W

h)

Real value Predicted value

Figure �.�: Heat demand forecasts and actual values for household � in July using
I = {H−� ,H−� , T�,��}

To give an impression of the forecast quality, the forecasted and real heat demand
of the �rst week of July of ���� of household � is depicted. As can be seen in the
picture, the actual heat demand consist of many high peaks, with moments of no
heat demand between the peaks. �e trained neural networks is unable to properly
forecast these high peaks, resulting in a MAPE is ��.�� and the MPE is ��.�� for this
week.

Although the initial results look promising, a better heat demand forecast is
required. Especially for certain households there is a large space for improvement.
Furthermore, by dividing the input data randomly into the training and validation
sets, like in the initial results, a large data set is required before training and fore-
casting can start. In other words, when such a forecasting system is used in real life,
it takes a very long period to collect the information to train the forecasting model.

A possibility to solve this problem is to add more information about the en-
vironment and human behavior to the input set. By adding more information to
the training data, less training data might be required to properly train the neural
network. As mentioned earlier, the user-interaction should be kept to a minimum,
thus information about human behavior is not a good candidate to add to the input
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Table �.�: �e Mean Absolute Percentage Error and Mean Percentage Error with
wind, no sliding window

H Sun Mon Tue Wed �u Fri Sat
MAPE MPE MAPE MPE MAPE MPE MAPE MPE MAPE MPE MAPE MPE MAPE MPE

1 2.10 1.35 2.26 1.46 6.32 5.61 3.94 3.13 3.48 2.74 1.65 0.63 2.09 1.21
2 2.48 1.65 4.74 3.91 2.43 1.72 2.75 1.94 1.92 1.06 2.19 1.39 3.24 2.64
3 0.47 0.05 0.55 0.16 0.53 0.07 0.48 0.02 0.61 0.10 0.57 -0.06 2.61 2.14
4 1.91 1.14 1.99 1.40 1.37 0.41 2.69 1.89 1.34 0.57 2.97 2.13 1.52 0.78

Table �.�: �e Mean Absolute Percentage Error and Mean Percentage Error without
wind, � weeks sliding window

H Sun Mon Tue Wed �u Fri Sat
MAPE MPE MAPE MPE MAPE MPE MAPE MPE MAPE MPE MAPE MPE MAPE MPE

1 2.23 1.51 1.47 0.65 1.37 0.74 2.51 1.72 1.29 0.56 4.52 3.69 1.48 0.70
2 1.71 1.11 1.11 0.33 1.90 1.25 1.66 0.96 1.65 0.89 0.73 -0.03 1.38 0.80
3 0.38 0.02 0.33 0.01 0.44 0.13 0.45 0.13 0.38 0.04 0.72 0.32 3.79 3.42
4 0.75 0.11 1.35 0.94 2.55 1.92 1.12 0.40 6.07 5.44 1.14 0.48 1.22 0.42

set. Since the METAR report also provides wind speed information, we have analyzed
the in�uence of adding wind speed information [�].

Table �.� shows the result of using input set I = {H−� ,H−� , T�,�� ,W�,��}, thus
adding wind speed information to the initial approach. For households � and �
only two out of the seven weekdays show an improvement, where the improvement
is only minor. For households � and � three respectively four weekdays show a
signi�cant improvement, where the less performing models for the other weekdays
show more or less similar results. Wind speed information can thus be a valid
addition to the input set.

As described in Section �.�.�, another possibility is to use a sliding window
approach. �erefore, the e�ect of a sliding window is analyzed as well [�].

�e results in Table �.� up to Table �.� show the results of adding a slidingwindow
to the initial approach. We see that by using the sliding window an improvement
in the prediction quality can be seen for many households/weekdays. In general,
using a sliding window size of � weeks, which is the smallest window size analyzed,
o�en gives the best results, especially for household �, where for six of the seven
weekdays the best results are obtained using a sliding window size of � weeks. Only
for Sundays the results are worse, but still close to the original values.

In Table �.� up to Table �.�� the results of both adding windspeed information
and using a sliding window are depicted. Again, compared to the non-sliding
window approach using wind information, an improvement can be seen for many
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Table �.�: �e Mean Absolute Percentage Error and Mean Percentage Error without
wind, � weeks sliding window

H Sun Mon Tue Wed �u Fri Sat
MAPE MPE MAPE MPE MAPE MPE MAPE MPE MAPE MPE MAPE MPE MAPE MPE

1 2.38 1.70 1.50 0.73 2.00 1.42 2.69 1.94 1.62 0.87 6.29 5.48 1.46 0.69
2 2.08 1.35 1.36 0.59 2.01 1.32 2.23 1.59 2.25 1.47 1.10 0.34 1.62 1.04
3 0.50 0.17 0.38 0.01 0.49 0.14 0.48 0.07 0.45 0.13 0.94 0.58 0.86 0.44
4 1.26 0.59 1.94 1.51 3.28 2.54 1.32 0.56 4.95 4.39 1.58 0.85 1.31 0.61

Table �.�: �e Mean Absolute Percentage Error and Mean Percentage Error without
wind, � weeks sliding window

H Sun Mon Tue Wed �u Fri Sat
MAPE MPE MAPE MPE MAPE MPE MAPE MPE MAPE MPE MAPE MPE MAPE MPE

1 2.64 1.91 1.60 0.77 2.08 1.49 2.80 2.01 2.12 1.37 6.61 5.82 1.42 0.60
2 1.69 1.03 1.63 0.85 2.18 1.46 2.11 1.47 2.49 1.73 1.77 1.03 1.71 1.14
3 0.52 0.18 0.37 0.01 0.57 0.21 0.57 0.16 0.48 0.09 0.66 0.28 1.65 1.33
4 1.51 0.81 2.30 1.83 2.40 1.51 1.72 1.00 3.95 3.35 3.82 3.14 1.83 1.13

Table �.�: �e Mean Absolute Percentage Error and Mean Percentage Error with
wind, � weeks sliding window

H Sun Mon Tue Wed �u Fri Sat
MAPE MPE MAPE MPE MAPE MPE MAPE MPE MAPE MPE MAPE MPE MAPE MPE

1 1.83 1.15 1.16 0.36 1.33 0.73 2.91 2.14 1.58 0.86 2.16 1.18 1.24 0.39
2 1.84 1.15 1.22 0.45 1.35 0.70 1.50 0.79 2.21 1.51 0.89 0.12 1.69 1.13
3 0.42 0.09 0.30 -0.00 0.44 0.13 0.44 0.11 0.41 0.05 0.80 0.41 1.50 1.12
4 0.81 0.18 1.18 0.77 2.18 1.38 0.97 0.27 3.61 2.85 1.08 0.35 1.12 0.36

households/weekdays. Again, a window size of � weeks o�en gives the best results.
To determine which approach is the best choice, Table �.�� depicts the inputs sets

which gave the best results. �e number in the table represents the sliding window
size, where a value of -� represents to not use a sliding window. �e + or − a�er the
number represents whether or not windspeed information is used. Surprisingly, the
predictionmodels for household � and � perform best when windspeed information
and a sliding window is used. �is is in contrast to the results shown in Table �.�,
where only windspeed information was added to the input set. For household � not
adding the windspeed information seems to be the best choice. For household �
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Table �.�: �e Mean Absolute Percentage Error and Mean Percentage Error with
wind, � weeks sliding window

H Sun Mon Tue Wed �u Fri Sat
MAPE MPE MAPE MPE MAPE MPE MAPE MPE MAPE MPE MAPE MPE MAPE MPE

1 1.31 0.59 1.57 0.81 1.55 0.91 2.48 1.69 2.00 1.33 9.85 9.05 1.21 0.38
2 2.10 1.38 1.31 0.52 1.81 1.17 2.05 1.35 2.50 1.86 1.31 0.56 1.87 1.29
3 0.56 0.22 0.30 -0.01 0.53 0.20 0.49 0.06 0.41 -0.03 0.69 0.35 1.37 1.00
4 1.32 0.75 1.67 1.27 2.50 1.81 1.13 0.37 2.99 2.23 2.24 1.49 1.43 0.63

Table �.��: �e Mean Absolute Percentage Error and Mean Percentage Error with
wind, � weeks sliding window

H Sun Mon Tue Wed �u Fri Sat
MAPE MPE MAPE MPE MAPE MPE MAPE MPE MAPE MPE MAPE MPE MAPE MPE

1 2.25 1.54 1.59 0.79 2.05 1.44 3.20 2.42 1.96 1.20 7.67 6.83 1.25 0.36
2 1.82 1.12 1.91 1.15 2.58 1.90 2.23 1.51 2.27 1.49 1.85 1.10 1.85 1.28
3 0.51 0.14 0.35 0.02 0.46 0.09 0.58 0.15 0.49 0.14 0.62 0.28 1.77 1.39
4 1.33 0.64 1.81 1.33 2.35 1.56 1.40 0.65 4.08 3.41 5.17 4.48 1.60 0.82

Table �.��: Best input sets (window size/use windspeeds)

House Sun Mon Tue Wed �u Fri Sat

1 5+ 4+ 4+ 5+ 4- -1+ 5+
2 6- 4- 4+ 4+ 4- 4- 4-
3 4- 4+ 6+ -1+ 4- -1+ 5-
4 4- 4+ -1+ 4+ -1+ 4+ 4+

the results are not decisive, where using the wind speed information has a slight
advantage over not using the wind speed information.

Overall, the optimal window size seems to be � weeks. For households � and �
a sliding window size of � week gives � respectively � of the � weekdays the best
result. For the other households, the results are not that decisive. It seems that
each household is unique, and that the best approach is very dependent on the
household.

�.� S�������� ��� �������� ����� ����������

As shown in the previous section, there is no single input set selection which always
gives the best results. Each house and each household is unique, so the inputs in
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the input set should be selected such that it gives the best results for this particular
combination of household and house. Furthermore, for the results of the previous
section, only historical heat demand data the day before and a week before is used.
Perhaps other combinations of historical heat demand can give better results.

For this reason, a general search method is required to �nd a suitable input
set, network size and window size. Similar to the work of Pai and Hong [��], a
Simulated Annealing (SA) algorithm is used to optimize the input set selection,
windows size and number of neurons.

SA is an heuristic optimization technique analogous to the annealing process of
material physics. Annealing is a process that produces conditions by �rst heating a
metal to above the recrystallization temperature. �en the metal is slowly cooled,
causing changes in its properties such as strength and hardness. �e heat causes
the atoms to become unstuck from their initial positions and wander randomly
though states of higher energy. By slowly cooling the material, the atoms can �nd a
con�guration with a more orderly state and therefore a lower internal energy than
the initial one.

SA is �rst described by Kirkpatrick et al. [��] and is based on the�e Metropolis
algorithm [��]. In SA each point in the search space S is analogous to the state of the
physical system and has a certain energy E(s), which has to be minimized. �e goal
is to bring the system from an arbitrary initial state to the state with the minimal
possible energy.

At each iteration, the SA heuristic considers some ‘neighboring’ state s′ of the
current state s. For the state s′ the energy E(s′) is calculated. If the change in energy
∆E = E(s′) − E(s) is not positive, the s′ is accepted and considered as the best
solution. If ∆E is positive, the state is accepted with a probability p determined by
the Boltzmann distribution. More precisely,

p = e
−(E(s′)−E(s))

kT ,

where k represents the Boltzmann constant and T the temperature. If a new state s′
is not accepted, another neighboring state is analyzed.

In other words, a new state s′ is accepted when the new energy is lower and
the SA algorithm moves to the considered state s′. If the new energy is higher, a
transaction can occur, and the likelihood is in�uenced by the temperature T and
the energy di�erence ∆E . During each step of the algorithm, the temperature is
lowered according to a cooling schedule.

�e probability of accepting a state with a higher value is what allows simulated
annealing to get out of local minima. In the beginning, when the temperature is
high, states with higher energy values are more likely to be accepted and the SA
algorithm keeps exploring the search space. However, when the temperature drops,
the probability of accepting a state with higher energy reduces signi�cantly, and
thus mainly only states with lower energy values are accepted.

Considering our forecasting model as a function F(I ,Fp)→ O, the SA algo-
rithm is used to determine proper values for I and Fp. In case of the heat demand
prediction, �nding a proper value for I reduces to determining a good subset of
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Table �.��: �e Mean Absolute Percentage Error and Mean Percentage Error using
Simulated Annealing

H Sun Mon Tue Wed �u Fri Sat
MAPE MPE MAPE MPE MAPE MPE MAPE MPE MAPE MPE MAPE MPE MAPE MPE

1 0.43 -0.17 0.66 -0.09 0.61 0.06 0.64 -0.03 0.71 -0.01 0.53 -0.16 0.47 -0.10
2 0.85 0.30 0.69 0.00 0.97 0.51 0.46 -0.12 0.68 0.03 0.47 -0.19 0.86 0.35
3 0.20 0.01 0.16 -0.01 0.16 -0.08 0.23 -0.06 0.19 -0.06 0.21 -0.06 0.22 0.01
4 0.39 -0.14 0.31 -0.03 0.50 -0.02 0.50 -0.08 0.40 -0.22 0.50 -0.04 0.45 -0.05

Ipos (see Section �.�.�). �e F is a neural network, thus the model parameters Fp
are the proper sliding window size and the number of neurons in the hidden layer.

Translating this into a state s for the SA approach, a state consists of the number
of neurons to use snn , the sliding window size ssw and the input SI . In this setting,
the error Etotal is used as the energy value for a state s, which should be minimized.
Based on the results in the previous section, the number of allowed neurons is
kept according to the network sizes in already analyzed networks, i.e. � ≤ snn ≤ ��.
Since a small window size showed the best result, the allowed minimal window
size is reduced to � weeks, i.e. � ≤ ssw ≤ �. For the input SI a (sub)set from Ipos
is allowed, with a restriction on W and T . If one variation of information about
windspeed/temperature is used for a day, the other two are not allowed any more
for that day. For example, if T−�,mm ∈ I , then T−�,�� and T−�,�� are not allowed.
Furthermore, SI is not allowed to be an empty set.

A neighboring state s′ is determined by either altering sn , ssw or sis , where the
probability of changing one of these �elds is uniformly distributed, i.e. all three
possibilities have a probability of �� .

In Table �.�� the MAPE and MPE a�er searching the optimal parameters is de-
picted. Our initial temperature for our SA algorithm was set to ��. �e temperature
was lowered a�er � steps with a damping factor of �.�� until the temperature dropped
under �.�. �e MAPE and MPE values in Table �.�� show a signi�cant improvement
of both error values.

In Table �.�� the parameters found by the SA algorithm are depicted. We see
that for almost all households and weekdays a very small window size performs
best, which is similar to the results shown in previous sections.

In Figure �.� the histogram of the input options is depicted. Here we see that
the heat demand data a week earlier provides the most useful information in our
prediction model, followed by the heat demand a day earlier. �us our initial
attempt, using I = {H−� ,H−� , T�,��}, was a good starting point. Furthermore,
we see that the SA o�en �nds input sets where temperature information is used.
Again, using wind speed information in the prediction model is dependent on the
household.

In Figure �.� the forecast of a week in July of household � a�er using the SA
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Table �.��: Model parameters a�er running the Simulated Annealing algorithm

H Weekday N WS Inputs

1 Sunday 26 2 H−4H−5H−7T0,60T−1,mm

1 Monday 24 3 H−1H−4H−7H−14W0,60W−1,mmT0,60T−1,30
1 Tuesday 28 2 H−1H−3H−5H−7H−14W−1,60T0,60

1 Wednesday 31 2 H−1H−4H−7H−14W−1,30T−1,mm

1 �ursday 18 2 H−6H−7W0,30T0,30

1 Friday 32 2 H−1H−2H−4W0,30W−1,30T0,30T−1,30
1 Saturday 31 2 H−1H−3H−6H−7H−14W−1,30
2 Sunday 23 2 H−1H−2H−4H−7W0,mmT0,mmT−1,mm

2 Monday 12 2 H−1H−2H−3H−5H−7W−1,mm

2 Tuesday 31 2 H−7W−1,60T0,30

2 Wednesday 24 2 H−2H−4H−7H−14W−1,30T−1,mm

2 �ursday 19 2 H−1H−4H−5H−7H−14W−1,mmT0,60T−1,30
2 Friday 12 2 H−7W−1,60T0,60T−1,30
2 Saturday 27 3 H−1H−2H−6H−7
3 Sunday 28 2 H−1H−2H−3H−4W0,60T0,mmT−1,60
3 Monday 32 2 H−2H−3H−5H−7W−1,30
3 Tuesday 33 2 H−2H−6H−14W0,30W−1,mmT0,60T−1,mm

3 Wednesday 26 2 H−1H−3H−5H−6W0,30W−1,30T0,mmT−1,60
3 �ursday 27 2 H−1H−4H−5H−7H−14W0,mmW−1,30T0,30

3 Friday 26 2 H−1H−4H−5H−6H−7W0,mmT0,30T−1,30
3 Saturday 29 2 H−1H−3H−4H−5H−7H−14W0,30W−1,30T0,mmT−1,30
4 Sunday 22 2 H−6H−7W0,mmW−1,mmT0,60T−1,60
4 Monday 32 2 H−1H−5H−7H−14T0,30

4 Tuesday 26 2 H−6H−7W0,60T−1,mm

4 Wednesday 25 2 H−6H−7H−14W0,mmT0,mmT−1,mm

4 �ursday 32 2 H−1H−6H−7W−1,60T0,mmT−1,mm

4 Friday 22 2 H−1H−3H−5H−7T0,60T−1,30
4 Saturday 24 2 H−1H−7T0,mm

algorithm is depicted. In this week, the MAPE is �.�� and the MPE is �.��. Again,
sometimes a high demand peak is forecasted, while in the real heat demand no
such peak is present. However, compared to the �gure in Figure �.�, a signi�cant
improvement in the quality of the forecasts can be seen.

To give more insight in the quality improvements of the di�erent approaches
used in this chapter, the error values (Etotal) of four approaches for household � are
depicted in Figure �.�. �e initial approach is depicted to show how well the �rst
attempt performed. �e two suggested improvements based on the initial results,
adding wind speeds information and adding the sliding window approach, shows
that no single approach always performs best. �e usage of the SA algorithm �nds a
proper approach, yielding a signi�cantly increased forecast quality.
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Figure �.�: �e histogram of the used input options
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Figure �.�: Heat demand forecasts and actual values for household � in July

�.� C����������

During the �rst step of T�����, the forecasting step, forecasts are used to determine
the scheduling freedomof a device.�erefore, for each individual device a forecast is
made, since device speci�c information and restrictions are required in the planning
and control of the device. In order to incorporate device speci�c information in a
forecasting system, without the necessity of communicating all required information
of each device to a central location, forecasting is performed by the local house
controller in each building. Using such an approach, the requirement of a scalable
forecasting system can be met. �e local controller can use locally harvested data
and can be programmed to forecast device speci�c information, resulting in a
�exible system. In the use case of individual heat demand prediction to determine
the scheduling freedom of a micro-CHP appliance, neural network techniques are
used. �e possibility of autonomous learning of (non-linear) relations between
the input- and outputdata makes neural network techniques a good candidate.
By adjusting the neural network structure, forecast on di�erent timescales can be
generated. Furthermore, periodically evaluating the forecasting quality and, when
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Figure �.�: Performance of the di�erent forecast approaches of household �

necessary, adjusting the input for the neural network, results in a system adaptable
to changes. �e usage of a SA searching algorithm results in an automated search
for a proper input set and neural network parameters.
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A������� – �is chapter describes how the forecasts are used in the second step,
the planning. Based on the forecasts and the scheduling freedom, the planner tries to
exploit this scheduling freedom of the devices for his objective. �is leads to a desired
pro�le for a �eet of buildings, which needs to be achieved, by generating a planning
for each building/device individually. Planning is performed in a hierarchical way
consisting of a top planner, multiple levels with intermediate grid planners and at
the bottom of the structure the individual building controllers. By subsequently
dividing the overall planning problem into smaller subproblems which are solved at
lower levels, a more scalable system is achieved. By aggregating information at each
level in the structure, communication is reduced. Using arti�cial cost price vectors,
the building controllers generate a planning for each device based on the costs
functions of the devices, the arti�cial price vector and the locally generated forecasts.
By iteratively adjusting the price vectors, the pro�les of the individual houses are
reshaped to reach the global objective. �ere are multiple ways to determine the
price vectors. �ey can be determined at multiple levels within the hierarchical
structure. �e best results are achieved by using di�erent price vectors for each
building, determined by the grid planner at the lowest level. Since the schedules
generated in the planning phase are based on forecasts, and forecasts o�en are
not perfect, deviations from the planning can occur. In a replanning phase, a new
planningmay be generated, based on the real situation and improved forecasts based
on more recent information. Enabling replanning shows a signi�cant improvement
in reaching the desired objective.

Continuous communication and cooperation between all the parties in the energy
supply chain is one of the key features of smart grid technology. Constant coopera-
tion between producers, grid operators and consumers allows for optimizations to

Major parts if this chapter have been presented at [VB:�] .

��
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improve the overall energy e�ciency, reduce CO� and allow more renewables in the
supply chain. In the previous chapter the �rst step of the three step approach, the
forecasting step, has been introduced. In this chapter, the cooperation between the
second step, the planner, and the third step, the real time control, is discussed in
more detail.

Using the forecasting step, the scheduling freedomof a device can be determined.
�e task of the planner is to exploit this scheduling freedom to achieve a certain
objective. Example objectives are peak shaving, reducing overall energy purchase
costs or supplying the demand with the highest possible share of renewable energy
sources. Certain global objectives require cooperation of multiple buildings. If
the group of buildings becomes large, a distributed approach with one or multiple
planners present in the grid may be required. In this case each grid controller
cooperates with a group of other grid controllers or buildings controllers.

Based on the objective and the scheduling freedom, in our approach a planning
for each building or each device is determined. �is planning is transmitted to the
individual building controllers (also called house controllers), which should follow
this planning as good as possible. Since the planning is based on forecasts and
forecasts o�en are not perfect, the controller must cope with di�erences between
the forecasted and real situation. When there is a large deviation between the
forecast and the real situation, the planning may become infeasible and replanning
is required. Using the recently observed information, a new short term forecast can
be made. Based on this newly determined scheduling freedom, the overall planner
can create a new, more feasible planning.

In the remainder of this chapter, �rst the requirements and goals of the planner
and the cooperation between the planner and the building controller is introduced.
�en, some related work on smart grid control systems is given. In Section �.�, the
chosen approach is described. �e algorithms used in this approach are given in
Section �.�.�. A�er presenting some preliminary results in this section, the process
of rescheduling is described in Section �.�. �is chapter �nalizes with conclusions
in Section �.�.

�.� G��� ��� ������������ �� ��� �������� �����������

�e goal of the three step control methodology is to exploit the optimization poten-
tial within a building in a generic way to achieve a certain objective. As mentioned
earlier, this objective can di�er and is dependent on the stakeholders of the control
system. For example, a building controller might cooperate with a planner owned
and controlled by a grid operator. Such a grid operator might prefer peak shaving
by shi�ing load to minimize the required grid capacity. If on the other hand the
buildings controller cooperates with an operator of a Virtual Power Plant (VPP), the
operator might try to maximize the pro�t by steering the electricity production of a
�eet of micro-CHP appliances towards high price periods.

Based on the above considerations, the proposed methodology has to be �exible
in both the optimization objective and the technologies available. A�er all, the
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objectives may di�er over time and in di�erent buildings di�erent technologies
may be installed.

Within the three step methodology, cooperation and communication between
a house controller and a planner is possible. Cooperation implies that decisions are
made on di�erent levels within the system, and these decisions have impact on the
overall functioning of the system. In the remainder of this section, an exploration
of the used communication and decision structure of the the overall control system
is given.

As mentioned before, the control strategy consists of three steps. In the �rst
step, a system located in the buildings forecasts the production and consumption
pattern for all devices for the upcoming day. For example, in a normal household
multiple devices like a TV, washing machine and central heating are present. For
each devices, based on the historical usage pattern of the residents and external
factors like the weather, a forecasted energy pro�le is generated. �e combination
of these energy pro�les determines the optimization potential of all devices located
in the house. �e optimization potential of a device is dependent on the type of the
device.
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Figure �.�: Scheduling freedom of a fridge

For example, a fridge has to maintain its internal temperature within a certain
limit (see Figure �.�). How and when to achieve this can be varied. For a fridge, the
freedom is dependent on the internal temperature of the fridge, which is mainly in-
�uenced by the interaction of the residents with the freezer, by adding and removing
goods.

In the second step of the control strategy, these optimization potentials can be
used by a central planner to exploit the potential to reach a global objective. �e
result of the second step is a planning for each building or device for the upcoming
day.

In the �nal step, a realtime control algorithm decides at which times devices
are switched on/o�, when and how much energy �ows from or to the bu�ers and
when and which generators are switched on. �is realtime control algorithm uses
steering signals from the global planning as input, but preserves the comfort of
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the residents in con�ict situations. In this way, the algorithm can also deal with
forecasting errors.

�e �rst step has been described in Chapter � and for the third step we refer to
[��]. �e mathematical principles of the second step are for a micro-CHP appliance
is investigated by Bosman et al. [��]. In this chapter a more general analysis of the
second step, applicable to di�erent types of devices, is given.

Key in cooperative optimization methodologies is communication between all
the di�erent parties involved. �is communication can take place at di�erent levels,
from short-range communication in buildings between devices and the building
controller to wide-range communication between neighborhood control nodes
and a central planner. For example, the simplest case of communication in a house
is the wire connecting the thermostat and the (High E�ciency) boiler. However,
smart devices and Demand Side Load Management require a connection between
the building controller and these smart devices. For this communication, Power
Line Control (PLC) or a wireless standard (e.g. Zigbee) can be used since their
installment is relatively cheap. New smart meters with some computing capacity
are a very good candidate to act as building controller.

On top of communicating within the building, the optimization methodologies
need communication linkswith parties in the grid towork towards a global objective.
�e most common connection is a connection to the distribution company, but
other schemes are possible as well. Especially in future smart grids topologies it
is very likely that even more communication takes place. �erefore the control
strategy should take communication restrictions into account.

Besides limited communication, also only a limited amount of computational
resources may be available. Since �nding an (near) optimal utilization of the avail-
able resources in the smart grid may require a lot of computational power [��], a
control scheme must exploit the computational power spread in the smart grid as
much as possible. Furthermore, the control system should be dependable and must
be able to cope with failures within the system.

Summarized, the system should:

Be device agnostic �e system should work with di�erent kinds of devices. In a
building many kinds of devices are present, each which di�erent characteris-
tics and limitations. Still a generic control scheme is required.

Respect communication restriction Communication links have limited bandwidth
and, more importantly, introduce latency e�ects.

Respect limited computational power Finding a (optimal) solution for a large
group of devices may take too much time. �e system should exploit the
available computational power in the grid.

Dependable �e system should be able to cope with (forecasting) errors.
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Most approaches about smart grid control strategies found in literature are hierarchi-
cally structured, agent based solutions, where the hierarchical structure ensures the
scalability of the solution. Although a lot of approaches claim to be distributed with-
out a central algorithm, all approaches found have one decision-making element
(node, agent, etc.).

Hines et al. [��] describe a decentralized, agent-based, realtime control method-
ology. On di�erent levels in the network agent-based nodes are installed controlling
and/or monitoring a network element (e.g. house appliances, capacitor banks, sub-
station voltage).�ese nodes communicatewith each other to exchange information,
optionally also with human operators. �e communication is structured in a sort
of hierarchical way: the nodes are divided in groups exchanging information with
each other. When all information is available, the group leader makes a decision,
optionally in cooperation with other group leaders.

�e PowerMatcher described by Hommelberg et al. [��, ��] is an agent-based,
hierarchical optimizationmethodology. Every device in the house can be controlled
by an agent. �is agent sends a bid (amount of demand/generation and a price)
to the agent one level higher (house agent), which aggregates all bids and sends
the aggregated bids one level higher, etc. �e root agent decides, based on the bids
and the objective, the market clearing price. �is price is distributed and each
agent knows what to do based on his bid made and the market clearing price. �e
agents coupled to a device can use predictions to optimize their bidding strategy.
However, this is on a local (device) level, only leading to pro�t optimization of the
device-agent itself.

For the GridWise project [��] a decentralized control methodology with dy-
namic pricing is used. In this approach, no centralized algorithm is used. Field tests
showed that the dynamic pricing can reduce peaks up to ���.

Koch et al. [��] describe a methodology to manage thermal household devices
(fridge, freezer, boiler), which can have a bu�ering property: cooling a freezer
during low demand periods may prevent having to cool during peak demand
periods.�eir approach uses one central controller, all houses are directly connected
to this controller. To prevent sending too much detailed information (privacy),
only the costs to switch a device on or o� are sent. �e central controller decides
how much devices should be switched on and determines the switch-on-price and
switch-o�-price.

�e similarities between the described approaches and our approach is re�ected
in the control up to a device level and the hierarchical structure with aggregation
on each level. �e main di�erences are the prediction/planning and the lack of
agents. Although the PowerMatcher approach uses prediction and planning on a
device level, this is utilized for pro�t raising of the agent itself. �e latter is also the
main di�erence between our approach and an agent-based approach: agents are
greedy and try to optimize their own pro�t where our optimization methodology
tries to reach a global objective for the whole �eet. Furthermore, our approach uses
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variable steering signals instead of the same price/signal for everyone and has a
larger planning horizon (up to one day in advance).

�.� A�������

�ere is a large group of buildings present in the grid, each again with a multiple
devices. Some of these devices might have some scheduling freedom, while others
have none. Preferably, a single control system present in the building should be able
to exploit the scheduling freedom of the devices, without knowing the individual
restrictions and characteristics of each individual device.

Whenmultiple buildings cooperate to reach amore global objective, for example
an energy neutral or energy autonomous neighborhood, communication between
the building controllers is required. �e envisioned global objective in�uences the
requirements on the overall control system in both network and computational
requirements. For instance, if a centralized system has to be used for realtime power
quality control, latencies of only a few milliseconds are allowed considering the
current power supply uses a �� or ��Hz alternating current. Modern communi-
cation technology like ADSL or cable have latencies of � up to ��ms. Furthermore,
the controllers need to process the message and a�erward communicate with the
devices present in the house to give a control signal. Again, these devices need to
process these commands as well. Furthermore, reaching controllers spread over
the grid for power quality control most like requires multiple communication hops,
making the latency requirement very hard to reach or only with substantial costs.

Based on this, a better approach is to make the building controller more au-
tonomous. �e controller should be able to take many decisions locally and only
swi�ly communicate with other controllers. �e coordination between the con-
trollers is then more for decisions on the long term, in the order of seconds or even
minutes. Using such an approach, network latencies of modern communication
technologies are su�cient and cause no problems. Still global objectives like peak
shaving, virtual power planting and demand and supply matching are possible, but
now in a distributed way.

For this reason, our planning and control methodology is organized in a tree
structure. �e root node of the tree contains the global planner. �is global planner
tries to optimize the energy pro�le of the whole �eet, based on a given objective.
Taking into account the information on the forecasted energy pro�les of all con-
sumers, this given objective leads a desired energy pro�le of the �eet. However,since
matching this desired energy pro�le exactly is very di�cult or even impossible,
the desired energy pro�le is described by a lower and upper bound on this pro�le
(see Figure �.�). �e aggregated load pro�le of all buildings steered by the planner
should fall within these bounds.

�e structure of our proposed control system, as depicted in Figure �.�, allows
di�erent strategies to achieve the desired pro�le. At multiple levels in the hierarchi-
cal structure the overall pro�le can be divided into smaller subpro�les, which need
to be reached by lower grid controllers. As depicted in Figure �.�(b), somewhere in



thesis December 19, 2011 23:28 Page 69 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

��

CH
A
PTER

�.
D
ISTRIBU

TED
C
O
N
TRO

L

� � � � � �� �� �� �� �� �� �� ��
Time

El
ec
tr
ic
ity

D
em

an
d

Upper bound Planned Lower bound

Figure �.�: Desired pro�le with upper and lower bounds
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Figure �.�: Organization and information �ow of the proposed control scheme

the hierarchical structure a controller switches from subpro�les to steering signals,
in the form of price vectors, to reach the desired pro�le requested from the parent
grid controller. �e location where this switch is made is an important design choice
and determines which decisions are taken where. �is also has in�uence on the
autonomy of each controller in the structure. In the following sections, multiple
possibilities of switching points and steering vectors are explored.

Determining steering vectors at the top of the structure

Asmentioned above, the root planner tries to achieve a desired pro�le. An approach
to reach this desired pro�le is by directly using steering signals. �is planning
strategy is depicted in Figure �.�. �e steering signals are sent to all the connected
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subgridcontrollers. �e subcontrollers then distributes the steering signals to the
controllers below. At the bottom of the structure, the local controllers generate
their planning based on the received steering signal and send these upwards to
the subgridcontrollers. �e subgridcontrollers aggregate the received information
and submit this information upwards in the tree. Based on the aggregated pro�les
and the corresponding mismatch with the given lower and upper bounds, the top
controller determines new steering signals and sends these adjusted steering signals
downwards in the tree. �is process is repeated until the top planner is satis�ed
with the achieved results.
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Lx Plan & reply with pro�le

s Steering
i Information

Top Middle Lowest

Figure �.�: Distributed planning strategy work�ow, steering at top

Determining steering vectors at the bottom of the structure

Another possible control approach is determining the steering vectors at the bottom
of the tree structure. �is planning strategy is depicted in Figure �.�. In this
approach, the root planner tries to achieve the desired pro�le by decomposing the
pro�le into subparts and delegating these parts over the planners located in the
nodes of the hierarchical structure directly below him (see Figure �.�(a)). Each
planner directly below the root planner is responsible for planning its part of the tree
such that his desired share of the global pro�le is reached. Again, these planers try
to achieve this goal by delegating subparts of their desired pro�le to their children.
�e planners on the bottom of the tree are directly connected to the controllers
located in the buildings. �ey try to achieve their given energy pro�les by sending
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steering signals to the building controllers. Based on these steering signals, these
controllers generate a planning for the coming day and send their planning to their
planner.
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Figure �.�: Distributed planning strategy work�ow, steering at bottom

On every level, the received data from the level below is aggregated and sent
further upward in the tree. Based on the mismatch between the planning and the
desired pro�le, the root node adjusts the partition of the pro�le, sends this to the
planners directly below him and then the process starts again. �is iterative process
is repeated until the resulting pro�le falls between the lower and upper bound (if
possible).

Di�erences between the planning strategies

In the �rst approach, all the autonomy is with the top planner. �e decisions are
made at the top level, where the subgridcontrollers are only used to distribute
the price signals and aggregate the data. �is keeps the planning process more
comprehensible, since only at one part of the planning structure decisions are
made. However, changes in the planning require a traversal over the whole tree.
Furthermore, this approach can result into an oscillating e�ect of the planners.
Since a lot of subgrid- and local controllers receive the same steering signal, they
may all react on a similar way, all shi�ing their load to the same time periods. �e
central planner will adjust the steering signal accordingly, again shi�ing all the load
to another period.
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In the second approach, the planning is more distributed over the tree structure,
as the (sub)gridcontroller is responsible for solving its own subproblem. �is leads
to a more sophisticated but also more scalable solution, since each subgridcontroller
can autonomously plan a large group of houses. Only when problems occurs during
planning the desired (sub)pro�le, like the infeasibility of a pro�le, more coordination
and communication with other grid controllers may be required.

Common in all approaches is the exploitation of the computational power
available within the grid. �e actual device planning, which required the most
computation power, is executed at the local controllers. Due to the tree structure and
continuous aggregation, the required amount of information to be communicated
is not very large. �is �ts well within the expected structure of smart grids, where
faster communication links between buildings and the nearby planner may be
available and higher level planners may be further away. Dependent on the used
communication links, and their required investment costs, probably less advanced
communication links can be used to communicate to higher levels. It is therefore
desired to reduce the amount of data exchanged between the higher gridcontrollers,
which is achieved by the aggregation of information at each level.

�.�.� ����������� ��������� ��������

As mentioned in the previous section a desired pro�le has to be achieved. Some-
where in the hierarchical approach, via steering signals the devices in the buildings
are steered to reach this pro�le is the best possible way. By using steering signals,
which in our approach always are price vectors, the electricity pro�les of the devices
that are steered are reshaped. In this section we introduce a method to determine
these price vectors. An example use case and objective is given to illustrate the
working of the chosen approach.

First, the planning horizon (the time period we want to plan) is discretized
into NR intervals of equal lengths. Given a �eet of H buildings, we �rst need to
determine the total amount of electricity TEC, which all buildings together would
consume based on their individual planning, is calculated. �e total electricity
consumption is determined by �rst sending a �xed, �at price vector with a �xed
price for all the time intervals (see the �st round trip in Figures �.� and �.�). All
local planners in response send back their expected electricity pro�le, based on
the forecasts made in the �rst step of T�����. So TEC denotes the total planned
consumption of electricity, if each building optimizes the use of the devices for his
own bene�t. Based in this information and the global objective, a desired pattern P
for the �eet is determined. Example objective are a pro�les with a shi�ed load to
certain time periods, or a �attened pro�le. Via steering towards this desired pattern
we try to achieve the desired objective.

�e principle behind the approach is that we iteratively adjust a (virtual) cost
price vector, which contains a arti�cial cost price for the electricity prices per time
period. �is vector is distributed to and used by the individual building controller
to optimize their devices for maximal pro�tability. By adjusting the prices, we try to
reshape the energy pro�le of a (group of) building(s). In case there are consumers
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present in a building, a building controller tries to shi� as much consumption as
possible to low price periods. When producers are present in a building, production
capacity is shi�ed to high price periods.

As mentioned above, the energy pro�le of a �eet of buildings should meet a
desired pattern P. However, since reaching exactly P might be impossible, we allow
the expected consumption in each interval to be in a certain interval band, for
example [�.�P, �.�P]. As a measure to analyze the quality of a planning, we de�ne
the following. Let TPL j be the planned consumption in interval j (TPL j ∈ P).
�enMj ∶=max{TPL j − �.�Pj , �.�Pj −TPL j , �} denotes the measure of quality for
interval j, and the total mismatch M = ∑NR

j=� Mj can be used as measure of quality
for the planning approach.

�e base of the heuristic for a building i is a local program DPi that determines
the usage of each device in the building, only regarding local constraints (the
operational characteristics of the devices determine the possible states of the devices)
and a price vector pi :

DPi
(pi)→ PLi , (�.�)

where PLi is the resulting pro�le.
�e planned consumption TPL of the whole �eet is an aggregation of the local

pro�les PLi resulting from the programs DPi :

TPL =
H
�
i=� PL

i
=

H
�
i=� DP

i
(pi). (�.�)

Solving towards a global optimum (minimal mismatch) means that an explo-
ration of the price space of possible price vectors for all building is needed. �e
power of the local program is that it produces a fast solution for a local problem,
instead of applying an optimization algorithm to the complete set of buildings
simultaneously. �e proposed heuristic uses this fast local approach iteratively to
�nd a solution for the complete set of buildings. However, for practical use, the
number of iterations needs to be limited to gain as much as possible from this
advantage of having a fast local procedure.

�e used price vectors are used to steer the pro�le to the desired pro�le, but can
also be related to the energy cost price. As a consequence, the costs can determined
by two parts: electricity costs epi and arti�cial costs api . In the use case the
electricity costs remains constant during the di�erent iterations of the planning
process. �e arti�cial costs are used to move the consumption of the devices to
speci�c periods. Summarizing, we use as ‘interface’ to the local planning performed
by the local program the arti�cial costs api .

In general the iterative search works as follows. �e initial price vector for all
building, used to determine the TEC, is set to the electricity prices ep.

pi ,� = ep, (�.�)
(�.�)

If a�er the planning in iteration n the consumption of building i is too high for
a certain interval, the price for this interval is enlarged based on the deviation from
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the target planning and the arti�cial price api . If on the other hand the consumption
of the building is too low for a certain interval, the price for the interval is similarly
lowered. To ensure stabilization of the algorithm, the magnitude of the arti�cial
prices is reduced a�er each iteration. More formally, the prices for iteration n and
building i are changed via:

pi ,n+� = pi ,n + addPrice(api ,n , TPLn
)), (�.�)

api ,n = api ,n−� − pi ,�

maxit
, (�.�)

where maxit is the maximum number of iterations and TPLn is the planned total
consumption in iteration n. �e addPrice function is described in the following
section.

Price distribution

�e structure in Figure �.� allows di�erent strategies to partition the overall plan-
ning problem over the tree. At multiple levels in the hierarchical structure the
overall pro�le can be divided into smaller subpro�les, which need to be reached by
lower grid controllers. As depicted in Figure �.�(b), somewhere in the hierarchical
structure a controller switches to steering signals, in the form of price vectors, to
reach the desired pro�le requested from the parent grid controller. In this section,
the e�ect on how and where these price vectors are constructed is discussed.

�e simplest possibility to construct the price vectors is to use an uniform price
vector. In this case, all the buildings receive the same price vector. Here the function
addPrice(api ,n , TPLn

) returns a vector (a� , . . . , aNR), where:

a j =

�
����
�
����
�

api ,nj if TPLn
j > �.�P

−api ,nj if TPLn
j < �.�P

� otherwise.
(�.�)

�e function addPrice only results into steering via a j in case the result of the last
planning iteration is above or below the desires pro�le. In this approach the search
space is limited since we use an equal price for all buildings.

In a second variant we create diversity between buildings by allowing only a
fraction of the buildings to change its price. �e vector (a� , . . . , aNR) resulting
from addPrice is then de�ned as follows:

a j =

�
������
�
������
�

api ,nj if (TPLn
j > �.�P) AND (rand(�, �)i < Mn

j
TPLn

j
)

−api ,nj if (TPLn
j < �.�P) AND (rand(�, �)i < Mn

j
TPLn

j
)

� otherwise,

(�.�)

where rand(�, �)i is a random number between � and � for building i, where
higher mismatch results in more buildings receiving an adjusted price vector. Using
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this variant of the addPrice function, the arti�cial price is still dependent on the
mismatch, but due to the random not every building receives the same price vector.

Within the hierarchical structure we can implement the second variant (the
usage of di�erent price vectors) in two di�erent ways. �ese two ways di�er where
the stochastic choice of changing a price is made. On the one hand, the random
choice to change an additional arti�cial cost in a certain interval can be picked
at the bottom of the hierarchical structure, i.e. just above the building controller.
On the other hand, we may also pick this choice at higher branch in the structure,
meaning that all underlying buildings get the same price vectors. �is can be seen
as a compromise between the idea of the �rst and second variant, allowing only
di�erent prices on a higher level in the structure.

Using the heuristic, the planner tries to reshape the energy pro�le to the desired
pro�le. It might need a number of iterations, which must be limited in order to �nd
a solution on time. It might be possible that the desired pro�le is unfeasible to reach.
�e heuristic can use di�erent stop criteria. In the current (initial) implementation
the heuristic ends when the maximum number of iterations maxit is reached to
analyze the impact of the algorithm in each iteration. In future work, each planner
within the structure can end the search in its substructure whenever the aggregated
planning of this substructure con�rms the desired planning for this planner or if
there has been no signi�cant improvement in the last iterations.

�.�.� �������

To illustrate the working of the distributed iterative approach we consider a use case
in which a large group of freezers has to be steered. �e internal temperature of
freezers has to maintain between certain limits. Since the environment of a freezer
is relatively static, freezers show a very regular and predictable pattern. When the
cooling element of a fridge is switched o� the temperature rises slowly. Once a
certain upper temperature is reached, the cooling element is switched on to cool to
a certain lower temperature threshold. By advancing and postponing the switching
points of the cooling element, the energy pro�le of the freezer can be altered, as
long as the temperature boundaries are respected. �e regular pattern of the freezer
simpli�es the planning of the device.

�e local planning program, of which some states are depicted in Figure �.�,
generates a pro�le for the freezer. Each state change requires a certain amount of
electricity and leads to a certain cost, similar to the example of the fridge in Figure �.�
on ��). As will be explained in Chapter �, each individual device is controlled using
a set of costs function. Based of the state change costs, which are determined by
the costs functions of the device and the price vector, the local program tries to
minimize the costs. �e path with the lowest costs determines the planned behavior
and the corresponding usage of the freezer.

�e global objective of the use case is to spread the electricity consumption of
the whole �eet equally over the planning horizon, which is one day. �e general idea
is that, if we are able to �atten the consumption, this electricity can be produced
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Figure �.�: Planning of a freezer

more e�ciently, since constant generation is preferred over adaptive (�uctuating)
generation.

To analyze the performance of our algorithm, it has been implemented in our
simulator, which is described in Chapter �. Two scenarios are simulated. �e �rst
scenario is a simulation consisting of �� houses (with the above described freezer).
�is scenario can be used to analyze the performance of actual planner cooperating
with the house controllers. Due to the small amount of houses, only one central
planner and no intermediate planners are used. Using only one planner, the e�ects
of the di�erent approached determining the the steering signals can be used.

In the second scenario, ��� houses are controlled. For controlling this a larger
group, a hierarchical approach is used. Again, di�erent steering signals can be
used to study the e�ect on the whole group, e.g. multiple ways to divide the whole
planning can be tested. Using this use case, di�erent strategies on where to switch
from (sub)pro�les to steering signals can be analyzed. �e strategies depicted in
Figures �.� and �.� are used in this scenario. Furthermore, like in the �� houses use
case, di�erent approaches on how to determine the steering signals can be applied.

In the next subsections, �rst the di�erent approaches in distributing the price
vectors are described. Another important aspect is the required communication,
which is analyzed in subsection �.�.�.

�.�.� ������ �� ��������� ����� �������

As described above, there are di�erent possibilities a) how price vectors are deter-
mined and b) how they are distributed over di�erent branches of the tree. In the
simplest case, there is only one global planner and the house controllers directly
cooperate with this global planner. �is is the case in the �rst simulation, where
�� houses are simulated. �e freezers in the houses all start with di�erent starting
temperatures and have di�erent characteristics, i.e. there are di�erences in cooling
capacity and the insulation quality. For example, the freezer in Figure �.� has a cool-
ing capacity of �.�○C and cold loss of �.�○C per time interval. Appendix A describes
how these di�erent starting temperatures and characteristics are determined.
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Figure �.�: Results of planning for �� houses

Determining the prices vectors via (�.�), (�.�) and (�.�) result in identical price
vectors for all houses. �e results of the planning using this approach is depicted in
Figure �.�(a). In this �gure, the evolution of the energy pro�le can be seen. In the
�rst iteration, the price vector contains only a single price for all time intervals. �is
results in a typical cyclic load, which aggregated leads to large peaks in demand.
Since all house controllers also receive the same price vector in the next iterations,
they all try to shi� their cooling cycles in the time interval with low costs, resulting an
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alternating pattern of consumption pro�les. Only a�er reducing the price changes
with the increasing number of iterations, the load pattern get more �attened, but
still has a peaky structure.

� � �� �� �� �� �� �� �� ��

�

�

⋅���

Iteration

M
Di�erent Uniform

Figure �.�: Evolution of M for planning with �� houses

When using di�erent prices for each house controller, as described by (�.�), the
quality of the planning improves signi�cantly. �e result of this scheme is depicted
in Figure �.�(b). �e production pattern is more �attened (as asked for by the global
objective).

In Figure �.� the evolution of the mismatch M in depicted. As can be seen
in the �gure, the usage of di�erent price vectors for the individual houses clearly
outperforms the usage of a uniform price vector. Not only is the mismatch lower
using di�erent prices, the mismatch is also reduced signi�cantly earlier. Although
the production pattern is quite �at, the global objective is not reached for every time
interval, since there is still some mismatch a�er the last iteration. �is is caused
by the limited amount of freezers. Although each freezer has a di�erent state, the
number of state combinations of the group is limited.

When ��� houses are simulated, the number of possibilities increases. It is then
expected that a more �attened production pattern can be reached. �e planning
of the ��� houses is organized in a tree structure with one global planner, four
intermediate planners, each planning �� houses. One possibility to alter the price
vectors is to use di�erent price vector for a whole branch of the tree. In this case,
the prices are adjusted with a certain probability only at the top of the tree. Each of
the intermediate planners receive a di�erent price vector, but distributes this price
vector unaltered. In this case, since the group of ��� houses is divided over four
intermediate planner, again a group of �� houses receive the same price vector.

�e most advanced scheme is to distribute the load evenly over the tree and
let the bottom planning determine the chances to change the prices vector. �e
top planner here determines the global objective, i.e. the demand pro�le for each
subtree. Each planning below then distributes its part of the pro�le to its children.
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(b) Determining the vectors at the bottom, resulting in a vector per house

Figure �.�: Results of planning for ��� houses

�e bottom planners, communicating with the building controllers, try to reach
this pro�le using the di�erent price vectors per house as described by (�.�). Once
the bottom planners are satis�ed with the result for their subproblem, the resulting
load pro�le is communicated upwards the tree. If the global objective is not reached,
the global planner may determine another distribution of the production pattern
over the tree and repeat this process until the global objective is met. Using such an
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approach, the most variation in price vector is obtained.

� � �� �� �� �� �� �� �� ��

�

�

�

�

⋅���

Iteration

M
Bottom Top

Figure �.��: Evolution of M for planning with ��� houses

�e results using determining the price vector at the top of the hierarchical
structure are depicted in Figure �.�(a). Similar to the case with �� houses with a
uniform price vector, still a alternating pattern can be seen in the �gure. Again, all
the houses in one group receive the same price, but since there are four di�erent
groups, enough variations between each group is present to �atten the overall
pro�le.

Figure �.�(b) depicts the results when determining the price vectors at the
bottom of the structure. Since each house receives a di�erent price vector, the
steering is more �exible and leads to the best results in both in the amount of
required iterations as in the end result of the planning.

In Figure �.�� the evolution of the mismatch M when planning the ��� houses
is depicted. When using the scheme where the prices are changed at the top of
the tree, at the global level, a price change has an impact on a whole subtree. As
expected, due to the di�erent pricing scheme for subtrees within the whole tree, a
more �attened production pro�le is obtained. However, since still a large group
of house controllers obtain the same price vector, still a relatively large mismatch
remains a�er the last iteration. �e case where each individual house has a di�erent
price vector has the best result, as was expected. �is scheme gives a very �ne
grained approach to steer an individual house.

Another advantage of this approach is that the optimization problem is very
distributed, resulting in a fast planning. Each planner on the button of the hierar-
chical structure execute in parallel. Most of the computation and communication
occurs nearby the house, only the results (the load pro�les) are feed back to the
global planner. Using such an approach, parts of the three can work autonomously
when necessary. �is results in a more dependable and scalable system.



thesis December 19, 2011 23:28 Page 81 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

��

CH
A
PTER

�.
D
ISTRIBU

TED
C
O
N
TRO

L

�.�.� �������������

Due to the tree like structure, the amount of communication is reduced by aggre-
gating the data at the intermediate levels. When dividing all the buildings over the
tree structure, the tree should be as wide as possible in the bottom of the tree and as
narrow as possible in the top, since this leads to the highest amount of aggregation.
Furthermore, using this structure, the algorithms can be distributed to the bottom
of the tree as much as possible, exploiting the available computation power. Further-
more, it is assumed that building controllers and the bottom planners are close to
each other with good communication links, resulting in fast communication. Going
further up the tree the amount of communication is reduced, which uni�es with the
fact that communication links between higher planners can have less bandwidth
and higher latency.

Since in our approach only price vectors and energy pro�les are used, the
amount of information that needs be exchanged is limited. Furthermore, no other
privacy sensitive information is transmitted. For each time interval to be scheduled,
only a single number needs to be transmitted. Since a production or a price can be
represented by a single number, the message size between two entities is determined
by the planning horizon (the amount of time intervals to be planned) and the
representation of the numbers. In our simulation of ��� houses, a planning is made
for each six minutes for a whole day, leading to ��� time intervals.

Since only small numbers are exchanged at the lower level planners, fewer bits
are required at these levels. �is is bene�cial, since most data is transmitted at
these levels. Going upwards in the three, the numbers increase and the amount
of bits can be increased accordingly. Another approach is to switch the scale, for
examples switching fromWatts to kilowatts. Although some accuracy might be lost
a�er switching, it is expected that higher tree the accuracy at the watt level is not
required.

Message Size
(� Bytes)

Message Type
(� Byte) Message content

Figure �.��: Used packet format for sending price/production vectors

�e prototype implemented in the simulator uses an own developed protocol,
of which the packet format is depicted in Figure �.��. Using this prototype protocol,
��-bit integer values for prices and pro�les are used at all levels.

In Table �.� the amount of network tra�c used for the planning of a single day
for each of the proposed methods using �� iterations is given. �e best planning
method, using di�erent price vectors per house, determined at the bottom of the
tree structure, required a total amount of ��.�MB, of which all data was transmitted
at the bottom level. Although this seems quite a lot of data, this is only roughly
�� kB per building. Note that a very �ne grained planning is obtained for a whole
day. Furthermore, many iterations were executed to analyze the e�ect of the algo-
rithms. By planning for a time interval of ��een minutes (similar to the electricity
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Table �.�: Network tra�c di�erent planning methods using �� iterations

Houses Steering vector Tra�c % at bottom

50 Uniform 4.1 MB -
50 Di�erent 4.1 MB -
200 Top 16.7 MB 98.24%
200 Bottom 16.4 MB 99.99%

markets time intervals), the amount of data can already be reduced by a factor of
two and a half. Another improvement can easily be made to use less bits at the
lower levels. For example, the demand pro�le of a house is limited to a couple
of kilowatts, thus a ��-bit value is more than su�cient to specify the demand in
each time interval. �e same holds the prices, allowing ��-bits values to be used
between the house controller and the �eet controller. Since ��.��� of the data
transmitted at the bottom of the tree structure, another factor of roughly two can be
achieved. Furthermore, since the algorithm reaches a good result a�er only a few
iterations, another reduction can be achieved by reducing the number of iterations
at the bottom planners. �ese numbers can be reduced even further by adding
compression and optimizations in information encoding, which is le� for future
work.

�.� R���������

As shown in the previous section, the iterative planning algorithm is able to reshape
the demand pro�le of a group of houses.�e overall planner distributes the planning
over the hierarchical structure to di�erent intermediate planners and eventually
all the di�erent house controller execute the planning of the devices. Based on
forecasts of the environment, together with the cost functions, the house controller
uses the price vector to determine demand pro�le for the planning horizon. As a
consequence, the planning is based on forecasts.

If a forecasting error has beenmade, it might be possible that the device does not
behave as initially planned and that a deviation from the planning occurs. Perhaps
such a deviation is compensated elsewhere in the grid, but it might also happen
that the planning is no longer feasible.

As a consequence, when the real situation di�ers too much from the forecasted
situation, an evaluation of the generated planning may be necessary. Using new,
improved short(er) term forecasts the feasibility of the current planning can be
determined and, when required, new iterations of the planning process can be exe-
cuted. �e decision to perform a replanning is dependent on the new information
obtained from the new forecasted, the desired objective function and the general
forecasting quality. �erefore, a suitable replanning threshold is required. If, for
example, the forecasted data has an average error of ��� and the local controller has
di�culties coping with this prediction error locally, starting a replanning session
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when a deviation of �� occurs will result in a lot over replanning sessions. Fur-
thermore, replanning requires a certain amount of processing and network tra�c,
which should be included when determining the replanning threshold.

Based on the objective of the planner, a new overall energy pro�le of a group
can be desired, or it might be necessary to stick closest possible to the initial desired
pro�le, but with a di�erent planning. For example, in case of a VPP it is bene�cial
to stick the closest possible to the original energy pro�le, since this energy pro�le
has been sold on the electricity market and deviations from this pro�le results
in a penalty. Another case can be that demand side load management is used to
balance the imbalance caused by renewables sources, and that the production of
these renewables is di�erent than forecasted, requiring a di�erent demand pro�le.

Again, based on the objective a (possible new) desired energy pro�le P needs
to be reached. In the initial planning stage, a planning is generated for a certain
time period T , which was discretized into NR time intervals, resulting in a desired
consumptionTPL j for each time period j ∈ [t� , t f ]. Based on theTPL j , a (di�erent)
price vector for the buildings present in the grids are generated using the iterative
approach. �e planner, present in the grid, can continuously monitor the real
demand pro�le and compare this real demand with the planned demand. When
in a certain time interval tp the deviation is unacceptable, the planner can execute
another planning session. In this replanning session, a new improved planning is
generated. Instead of generating a new planning for the whole interval [t� , t f ], only
a planning for [tp+� , t f ] is generated.

�e used approach is the same as used in the initial planning session, but for a
smaller time horizon and thus a shorter price vector. Furthermore, the building
controllers may use new forecasts based on the more recent information and for
a shorter time period. �ese forecasts are expected to have lower forecast errors,
probably resulting in a better achievable planning. When generating the schedules
for the devices, the current actual situation is used, compensating the di�erences
between the forecasted situation and the actual situations.

To analyze the e�ect of replanning, again the use case with ��� freezers are
planned with the same objective using the simulator. In the simulations in the
previous section, a perfect forecast of the behavior of the freezer was assumed,
resulting in no deviation from the planning. Now, an arti�cial forecasting error is
introduced. For each freezer, a single human interaction with the freezer between
�:�� and ��:��h (��� and ��� of the time intervals) is simulated. �e e�ect of the
interaction with the freezer is that the internal temperature of the freezer increases.
�ese internal temperature increase is chosen to be between �○C and �.�○C.�e
temperature change in the freezers results in another demand pro�le, since the
o�set temperatures are reached earlier.

When creating the forecasts for the freezer, this single human interaction is
also forecasted. During forecasting, a pseudorandom timestamp of this interaction
and corresponding temperature increase is used. �ese values, as described in
Appendix A.�.�, are used in the planning and replanning phases. For the real
situation, another pseudorandom timestamp and temperature increase are picked.
�e di�erences between the forecasts and the real situation results in a deviation
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from the planning. For each time interval the deviation from the planning is
determined with

Dev j = �
E j − TPL j

TPL j
�,

where E j is the actual electricity demand for time interval j. Since only one fore-
casting error occurs, with only a mild deviation from the planning, the replanning
threshold is chosen in such a way that when the actual situation di�ers ��� or more
from the planning a replanning is executed, i.e. Dev j ≥ �.�.

As a performance measure of the replanning, the deviation of the real electricity
�ow from the planned pro�le is used. �e goal of the replanning is to minimize
this deviation, thus a lower value is better.

During the (re)planning phases, the variant using di�erent price vectors for
each house is used, since this approach yields the best results. �e price vectors are
dependent on the deviation from the objective and the probability a price in the
vector is changed. �erefore, the overall results are dependent the values drawn
from the probability distribution and thus di�erent in each planning. For this
reason, both the scenario with and without replanning are simulated �� times.

�e mean deviation of the �� simulations without replanning was �����, with
a standard deviation of ���. �e mean deviation of the �� simulations with the
replanning enabled was �����, with a standard deviation of ����. As can be seen,
a signi�cant reduction of the mismatch is achieved. Since the forecasts in this
case are static and thus do not improve, a zero mismatch cannot be achieved. �e
improvement comes purely from the adjustment of the schedule of each freezer
during a replanning session. In the �� simulations with replanning enabled, on
average �.� replanning sessions were performed, with a standard deviation of �.�.

� �� �� �� �� ��� ��� ��� ��� ��� ��� ��� ���
�,���
�,���
�,���
�,���
�,���

Time interval

D
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d
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)

With replanning Without replanning

Figure �.��: �e best electricity pro�les of �� simulations with ��� freezers

In Figure �.�� the two best of the ��� simulations are depicted. �e dotted graph
is the result of the best simulation without replanning enabled, i.e. the one with
the lowest deviation. �e best results of the simulation with replanning is depicted
via the solid graph. �e dashed line in this �gure indicate the times the replanning
threshold was exceeded and a replanning session was executed. Up to the ��nd
time interval, the di�erences in the graphs are caused by di�erences in the steering
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signals caused by the probabilistic planning. Since there are no forecast errors in
this period, no replanning is required. Just before the �rst replanning session a
sharp drop in the demand can be seen. In this time interval the deviation is too
big and a replanning is initiated. Initially, the pro�le is nicely �attened, but the real
situation of the freezers is continuously deviating more from the predicted situation,
requiring in more �uctuation and eventually another replanning session. Overall,
the pro�le is more �attened, especially a�er the second replanning session.

�.� C����������

�e result of the freezer use case shows that the iterative approach is able to apply
global optimization techniques for a large group of houses. Although only a freezer
is scheduled using this approach, it may be clear that the use of generic price vectors
can also steer di�erent kind of devices. Since both the forecasts and planning are
performed at each building, all the required information for planning a (group of)
devices is locally available. �e building controller can use this information, and
use device speci�c constrains to generate a planning for the device. In this approach,
the distributed computational power available in the grid is exploited. Since less
information about the device and its environment needs to be sent outside the
building, less privacy sensitive data is exposed. Due to the subsequent division of
the large optimization problems into subproblems via a tree structure, a fast scalable
system is achieved.

Using uniform prices for all buildins leads to a sort of ‘worst case’ scenario. Since
all individual building controllers try to minimize their own cost, they all optimize
to periods with low costs, leading to a shi� of demand creating new peaks instead of
the desired pro�le. Addressing each building individually by using di�erent steering
signals gives the best results. However, independent on the way the price vectors are
determined, a proper tree structure helps that communication requirements can be
kept low. �e use of simple price and production patterns lead to small messages to
be sent.

Since the planned schedules are based on forecasts, forecasting errors can lead
to deviations from the initial planning. By detecting these deviations and executing
a replanning based on the actual situation and an improved short term prediction,
deviations can be minimized. However, replanning requires a certain amount
of processing and network tra�c. �erefore, when determining the replanning
threshold, issues like communication, processing power, forecasting quality, allowed
deviation and the ability of the local controller to cope with deviations should be
taken into account. Optimizations in the communication protocol can reduce
the amount of tra�c to the order of tens of kilobytes per building. With modern
communication standards, these amount of network tra�c can easily be processed.

Although the initial version presented in this chapter already shows promising
results, improvements are still possible and needed. On multiple levels in the tree,
better approaches to determine when to stop the planning are needed to reduce the
amount of iterations required during planning. Furthermore, by optimizing the
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way information is encoded during communication, bandwidth requirements can
further be reduced.
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A������� – Smart grid technology will change the demand pro�les of buildings.
To analyze the impact of the control methodologies introduced by the smart grid,
a simulator has been built. �e simulator is developed based on an energy model.
�e basic elements of the model are individual devices and between devices, energy
streams (electricity, heat, gas etc)̇ are de�ned. Devices can consume, bu�er, convert
and exchange energy, resulting in four categories of devices. �e energy streams
are modeled via so called pools, which represent the physical connections between
the devices. Using the pools, the energy balance can be ensured, by enforcing
the sum of the energy �ow to and from a pool to be zero. �e model has been
implemented in the simulator and a controller based on cost functions is used
to control the devices. �e cost functions provide a generic and �exible, but still
powerful method to control current and future devices. Furthermore, frameworks
for con�guration of the model, addition of stochastic variations and results analysis
are provided. Since the model is computationally intensive, the simulator can be
organized in a distributed fashion to allow simulation usingmultiple computers. �e
underlying communication framework for distributed simulation can also be used
for distributed control between grid- and housecontrollers. �e simulator evenly
distributes the load over the computers involved in a simulation. �e speed up is
limited by the slowest computer, but speeds up linearly to the number of computers
in the simulation.

Using the three step methodology, the energy pro�le of individual devices and
their corresponding buildings are altered. To analyze the e�ect of the methodology,
a model of the energy �ows has been developed. Using this energy model, all
devices present in the grid/gas network and their interconnection can be modeled.
With such a model, the e�ects of decisions made by the overall control system

Parts of this chapter have been presented at [VB:��] and [VB:�] .

��
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can be modeled and analyzed. Furthermore, by modeling future changes in the
energy infrastructure, like the introduction of large scale electric cars or distributed
electricity bu�ers at/in each building, the requirements of future grids can be
analyzed.

Based on this model, a simulator has been developed. In order to enable the
simulation of a large group of buildings, in spite of the computational complexity
of the model, the simulator has been designed such that it can be distributed over
multiple computers within a network. Besides analyzing the energy �ows within the
whole energy supply chain, the simulator is also able to cope with the cooperation
between the local and global controllers. �erefore, di�erent cooperation schemes
and their corresponding communication requirements can be studied.

In the remainder of this chapter, �rst the requirements of the model and the
corresponding simulator are given. �en, related work on other (energy) simulation
so�ware/frameworks is given. In the related work, the motivation of designing and
implementing a simulator is also given. Next, in Section �.�, the energy model is
described. In Section �.� the design and implementations details of the simulator are
given. Information about the distributed simulation is provided in Section �.�. �is
chapter �nalizes by some results and conclusions about the developed simulator.

�.� R�����������

�e goal of the simulator is to provide a tool to analyze the e�ect of optimization
methodologies, residential generation, storage technologies and smart devices for a
large �eet of buildings. �ese buildings can be houses, schools, o�ces or even small
factories. However, this work is mostly focussed in houses and their corresponding
devices.

Since the control methodologies steers individual (future) devices, these new
technologies need to be modeled and simulated at an appropriate level. Since resi-
dential generators, bu�ers and consumers are devices located in or near a building,
individual buildings need to be modeled in detail, i.e. on a device level. �e simu-
lated situation should be an accurate model of the actual situation. �erefore, every
individual device present in buildings has to be modeled. To make the model more
accurate, measurement data (e.g. electricity usage) should be incorporated into the
simulated devices.

Smart grid technology enables the possibility to develop new, smarter devices
with more controllable options. �e simulator should be able to simulate these to
incorporate future devices and technologies. Since it is not yet known what future
devices, technologies and scenarios look like, the model of a building needs to be
very generic and �exible.

Due to the di�erences in the behavior of the residents of a building, the devices
they own and use, the number of residents in a building etc. almost all buildings
are di�erent and have di�erent energy pro�les. �erefore, the modeled building
should be able to represent di�erent types of buildings (family/single-person houses,
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big/small houses, a small o�ce, etc)̇. We thus need a realistic, generic and �exible
model of a building.

Within a building o�en a controller is present. �is can be a simple controller
like a thermostat and a controller which decides when the boiler has to �ll the heat
bu�er, but a more sophisticated controller which takes for example electricity prices
into account is also possible. �e simulator should provide a framework to emulate
such a controller and analyze changes in the control system.

For the simulation of a massive introduction of micro-generation, multiple
buildings are combined in a grid. �e basis for this simulation is a realistic, generic
and �exiblemodel of a building since each building should be individually addressed
due to it’s individual characteristics and internal state. �e buildings need to be
grouped together to form a grid, e.g. a city with a realistic mix of buildings. �ere
are a lot of possible scenarios (di�erent combinations of buildings, local controllers,
etc)̇, thus this part of the model needs to be �exible as well. Especially when local
optimizations are coordinated on a global level, i.e. the local controllers are able to
communicate and cooperate with a coordinating global controller present elsewhere
in the grid, a lot of scenarios are possible. �e global controller can have di�erent
objectives, for example the creation of a Virtual Power Plant [��] or peak shaving.
�e local and global controllers need to cooperate and communicate with each other
to achieve the desired objective. �is cooperation introduces requirements on the
communication between the local and global controllers. �e simulation framework
should provide a means to analyze, implement and evaluate the communication
between the controllers.

Summarizing, the base of the simulator needs to be a realistic, generic and
�exible model of a building on a device level. Multiple buildings are combined in
a grid to analyze the e�ect of a large group of buildings. �e simulator should be
easily adaptable to new types of micro-generators, controllers and other supported
elements. It should be easy to simulate di�erent scenarios, combinations of di�erent
buildings, local controllers and global objectives.

Using the simulator, the quality of the controllers and their control algorithms
can be studied. �is requires that su�cient information about the devices and the
grid/gas connection etc. must be available. However, dependent on the objective
and the control algorithms, the amount of detail of the simulationmust be limited to
keep the overview in the otherwise massive amounts of simulation data, especially
when the amount of simulated devices/building becomes very large. �erefore, the
logging of data should be �exible.

Another important requirement concerns the speed and memory usage of the
simulator. �e tool has to be able to simulate a large �eet of buildings in detail. For
example, an average windmill park produces around ��MW. In order to have an
Virtual Power Plant (VPP) that is comparable to such a windmill park, a generation
potential of �� MW is necessary. �erefore, the number of buildings with for
example a � kWmicro-Combined Heat and Power (CHP) that should be simulated
within a reasonable time (hours) should be at least ��.���, leading to requirements
on processing power and memory usage. Again the amount of data is dependent
on how �ne-grained the simulation has to be.
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�e requirements described above can be brie�y summarized as:

�. Simulation of realistic settings and devices.

�. Simulation of both a single house and a grid with a large amount of build-
ings.

�. Flexible, both in adding new elements and in the supported scenarios.

�. Simulation of the whole energy chain.

�. Adjustable logging/precision.

�. Simulation speed and memory usage su�cient for ‘normal’ computers.

�. It should support a network communication framework for cooperation
between local and global controller.

�.� R������ ����

Simulation solutions already exist in a lot of di�erent areas, e.g. optimizations for
logistics, ��modeling or process management. However, most simulation so�ware
is domain speci�c and is not easily portable to di�erent application areas.

We have chosen not to use simulation frameworks like Tortuga [��] or SimPy
(Simulation in Python). Although these frameworks may provide some generic
functionality required for our simulation, they still require to create our own model
within the limitations of the framework. We considered it easier andmore promising
to create an own model in a familiar environment and still have the �exibility to
reuse work in the literature. Furthermore, our aim is to have a simulator that is very
fast and memory e�cient. Preferable the simulator should be usable on multiple
platforms, which makes distributing the simulations easier. For this reason, we
chose �++ as programming language, usingNokia’s QT library. �is library provides
e�cient, cross platform libraries for data storage, network communication and user
interfaces. Furthermore, the �++ programming language enables us to use other �
and �++ libraries.

�e focus of our research is on simulating the e�ect of (domestic) energy streams
on the system as a whole. Commercial so�ware is available where heat- and elec-
tricity load of large buildings can be simulated. �ese systems are o�en used to
optimize Heating, Ventilating, and Air Conditioning (HVAC) systems and facade
control systems or to build more energy e�cient buildings and take into account
the structure of the building and the materials used [�, ��]. However, our goal is
not to simulate the expected heat and electricity load, but to simulate the control
methodologies to supply the loads resulting from the structure of the building.
Other available energy simulation so�ware focuses on a speci�c technology, for
example wind parks or solar cells.

�e Advanced Local Energy Planning (ALEP) simulation framework [��] is
an initiative of the International Energy Agency and is developed in cooperation
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with multiple countries. �is simulation framework focusses on the local energy
supply. It can analyze which mix of generators can best be used for certain (remote)
areas. It takes, next to technical constraints, also management and social issues
into account. �e goal of the tool is to analyze the impact of di�erent generation
components in an area. Another free tool is HOMER, an optimization model for
distributed power [��]. It is a model that simpli�es the task of evaluating design
options for both o�-grid and grid-connected power systems for remote, stand-alone,
and distributed generation applications. It can also take bu�ering and deferrable
loads into account. �e goal of the tool is to �nd the best combination of supply
components and parameters for these components. �us, these two tools have a
di�erent focus and do not meet all of our requirements.

In related work regarding energy-optimizing control strategies the focus is
mostly on agent based approaches [��, ��]. An example of an agent-based system
is the PowerMatcher [��], which creates a virtual market to determine who can
produce/consume energy and for which price. Important in such an approach is
the stability and reliability of the bidding system, which is o�en simulated. �e
simulator described in this chapter has a more generic approach, where the focus
is on control of the system and the in�uence of that control system on the whole
system. Due to the �exible design, the PowerMatcher bidding system could be
embedded in our simulator.

In [��] a custom simulation system for the coordination of decentralized energy
conversion is described. Similar to our approach, a custom simulator is developed.
However, little detail about the underlying design is given and only one device
speci�c example is given. Our approach has a more �exible design. Di�erent
control strategies can easily be added and the design is more �exible to future
technologies.

PSfrag replacements
electricity

natural gas

district heat

mains supply

ENERGY HUB

loads

generation

heat
storage

Fig. 1. Sketch of a hybrid energy hub with typical elements: power-electronic
converter, micro turbine, heat exchanger, heat storage. Loads and smaller,
distributed generation (e.g. small hydro, wind, solar) are connected to the hub.

to find a representation that is ”sufficiently general to cover all
types of energy flows, but concrete enough to make statements
about actual systems.” Moreover, we aim at explicitly including
the couplings between different energy carriers in the model.
We consider a system of interconnected energy hubs and derive
the model in two steps: power flow within and between hubs.

A. Hub Power Flow

Consider the energy hub model in figure 2. Different energy
carriers α,β, . . . , ξ are exchanged at N hybrid ports. Within the
hub, power is converted in order to meet the load demand. The
power flow transfer from an input port m to an output (load)
port n (with m �= n) can be stated as:




Linα

...
Linξ





� �� �
output Lin

=




cαα · · · cξα

...
. . .

...
cαξ · · · cξξ





� �� �
Cimn




Pimα

...
Pimξ





� �� �
input Pim

(1)

where Cimn is called forward coupling matrix. This matrix
describes the power conversion from the input m to the output n
at hub i. The entries of the coupling matrix are called coupling
factors, they can be derived from the converter efficiencies and
the hub-internal topology and power dispatch (as demonstrated
in the example below). Usually, efficiencies of converter de-
vices (and therefore also coupling factors) are dependent on the
converted power [1]; including this dependency in (1) yields a
non-linear relationship.

The underlying causality for the derivation of (1) is that
power flows from the input to the output. Nevertheless, reverse
power flow is possible as long as the corresponding coupling
is realized by reversible technology. An electrical transformer
for instance allows power flow in both directions, whereas a
micro turbine does not provide this feature (see figure 2 for sign
convention).

The forward coupling matrix Cimn describes the power con-
version from the input port m to the output port n. Determining
the necessary input at port m for a certain desired output at port

PSfrag replacements

HUB i
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hubnetwork loads
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m n

Fjα

Fjβ

Fkα

Fkβ

Fkξ
line

Pimα
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Pimξ

Linα

Linβ

Linξ

Fig. 2. Model nomenclature for an energy hub exchanging energy carriers
α,β, . . . , ξ. F denotes line flows in the network, P are the hub input flows,
and L indicates the actual load flows at the output ports.

n requires the inverse relation:



Pimα

...
Pimξ





� �� �
input Pim

=




dαα · · · dξα

...
. . .

...
dαξ · · · dξξ





� �� �
Dinm




Linα

...
Linξ





� �� �
output Lin

(2)

where Dinm is called backward coupling matrix which can be
derived element-wise from its forward equivalent:

dβα =

�
c−1
αβ if cαβ �= 0
0 else

(3)

In other words, the backward coupling matrix can be derived
by inverting all non-zero elements of the transposed forward
coupling matrix.

Equations (1) and (2) enable to analyze port-to-port power
flow couplings. The total power demand of an N -port hub i
that is fed via a single input port m can be stated as:

Pim =
N�

n=1
n �=m

DinmLin (4)

This equation defines the multi-port backward power flow
coupling from the load ports n to the input port m of a hub.
It can be used to determine the hub’s input when loads are
given. If storage is present in the hub, an additional term can
be included in (4) which accounts for the power exchanged by
the storage. Assuming storage directly coupled to the input port
m, the continuity equation for the hub results in

Pim =
N�

n=1
n �=m

DinmLin +Ni
∆Ei

∆t
(5)

where ∆Ei is the change in stored energy Ei within a time
interval ∆t. Ni contains the energy efficiencies of the storage
devices including their network interfaces, e.g. power electronic
converters. The efficiencies can be derived as functions of
i) the storage’s energy content Ei, ii) the change in energy
∆Ei, iii) the time interval ∆t, and iv) certain device-specific
characteristics [11].

Figure �.�: Concept of a Hybrid Energy Hub

�e energymodel described in the next section is inspired by the work described
in [��], where the concept of a Hybrid Energy Hub is introduced (see Figure �.�).
�e basic principle is that multiple energy carriers — for example electricity, gas,
but also heat — are connected to the loads via energy hubs. Each hub has a certain



thesis December 19, 2011 23:28 Page 92 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

��

�.�.
EN

ERG
Y
M
O
D
EL

conversion matrix, where elements in the hub convert one or multiple energy
carriers into other carriers. A�er conversion, the converted energy streams supply
the required load. In the hub, both conversion and storage might be present. �e
conversion matrix de�nes the ratio between the input streams, the storage and the
output streams. In this conversion matrix, e�ciencies of the conversion, storage
and transportation can be incorporated. �e problem with this approach is that
the load is inelastic, while in our approach we want to analyze the possibilities to
change the load, since for certain devices a certain freedom exists in controlling the
device.

�.� E�����M����

Heat

Electricity

Photo Voltaics

Controller

Gas

Heat store

Figure �.�: Overview of a expected house

As described in Section �.�, the simulator is used to analyze the e�ect of control
methodologies for residential generation, storage technologies and smart appliances.
�erefore, the basis of the simulator is a model of a building. As an example of a
building, an example house as depicted in Figure �.�. In a building, multiple devices
are present, each with its own functionality. In this �gure, for example the television
and lighting are electricity consuming appliances. Electricity is imported from the
grid and consumed by the devices, a�er being distributed throughout the house.
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Besides electricity, heat is also consumed in the house for hot tap water and central
heating. In the �gure, the heat is stored (bu�ered) in a heat store for more comfort.

Heat can be, like electricity, imported from a district heating station or, more
common in the Netherlands, converted from gas using a (High E�ciency) boiler. In
general, energy can be imported and exported, consumed, converted and bu�ered.
�e energy model should therefore be able to support this. Like in [��], the energy
model is based on a set of energy-types. All energy streams within a building are
seen as streams of a certain energy-type: heat, electricity and gas, but next to that
also sunlight, wind, etc. Which energy-types are taken into account can be de�ned
per instance of the model. �is set can for example be electricity, gas, sun and wind,
but it is also possible to add reactive power to the set to be able to model phase
shi�ing.

Within a building energy is converted, (temporarily) stored and consumed
by devices. E.g. a hot water tap is a heat consuming device just as a television is
an electricity consuming device. �e model distinguishes four di�erent types of
devices within the house: �) exchanging devices, �) converting devices, �) bu�ering
devices and �) consuming devices.

�.�.� �������

�e basis of themodel are devices and energy streams between these devices: energy
of a speci�c type �ows from device to device. Every device does something with the
energy-types (exchange, convert, bu�er, consume). So, a device is an entity where
energy �ows in and/or out and where for each in/out port the type of the energy
streams is speci�ed.

All devices within the building are modeled individually, since the optimization
algorithms optimize the behavior of individual devices. Such behavior can for
instance be the decision when to run a converting device (e.g. starting a micro-
CHP).

As mentioned earlier, the model distinguishes four kinds of devices:

Exchanging devices exchange energy with the outside world. Concerning a build-
ing as an entity that is modeled, a building exchanges energy with its envi-
ronment. For most conventional houses only electricity can be imported and
exported and gas that can be imported. But some building, like �ats, also
import heat from district heating. Furthermore, also sunlight and wind are
modeled as energy imports when a building is equipped with a solar panel or
micro wind turbine. In our model an exchanging device can only exchange
one energy-type with the outside world.

Converting devices convert one or more energy-types into one or more other
energy-types. In ourmodel, the amount of energy streaming into these device
is equal to the amount of energy streaming out of these devices. Although
the energy-types are di�erent, no energy is lost during conversion. However,
energy conversions (o�en) have a certain amount of loss during conversion.
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�is is modeled as a separate energy stream out of the device. So, a running
micro-CHP for example has a gas stream in (����) and a heat stream (���),
an electricity stream (���) and loss stream (��) out.

Bu�ering devices can temporarily store an energy-type. �ese devices have an
energy-type stream in and the same energy-type stream out. �is separation
of the stream in and stream out is necessary since these streams are not always
shared, e.g. most currently installed hot-water bu�ers have separate in and
out �ow circulations. When the in and out stream are shared, the streams
can be combined when implementing of the device. Next to the in and out
stream, a separate energy-type stream out can be used for modeling loss.

Consuming devices consume one or more energy-types in a certain ratio. For
most devices, the amount of energy consumed in a certain time interval (the
consumption pro�le) is a characteristic of the device and is therefore de�ned
on beforehand. A loss device is also modeled as a consuming device. For this
device it is not de�ned how much energy it consumes, it simply consumes all
loss (since loss streams are connected to this device).

�.�.� ����������� ��� �������

For every device certain limitations are given, e.g. the amount of energy it can import,
the amount of energy it can convert, etc. Furthermore, within the limitations of
the device there are o�en multiple options possible on how to use the device. For
example, a high e�ciency boiler might have a modulating burner, allowing di�erent
heat production levels. Every device has a set of possible options O (micro-CHP
on/o�, bu�er charge or discharge and how much) and based on the state s of the
device (e.g. State of Charge (SoC) of the bu�er) a subset Os of the set of options are
valid options. A control algorithm needs to decide which option to choose.

�e limitations concerning the exchanging devices are the amount of energy
which can �ow in and out. �ey are characteristics of the exchanging devices and
are modeled within the devices. �e decision is how much energy is exchanged,
within the bounds of these limitations. �e amount of every energy-type �owing in
and out, as well as the limits, can be de�ned in watts.

For converters, the amount of energy that can be converted is o�en limited.
Furthermore, o�en there are only a few possible levels of conversion (e.g. � kW,
�� kW and �� kW) or conversion regions (e.g. �–�� kW and ��–�� kW) and the
e�ciency can di�er per level or region. �e decision in this case is to choose a valid
conversion level out of the set of options. Next, there are �xed ratios between the
di�erent input streams (optionally di�erent per level). To calculate the amount of
every energy-type �owing out based on the amount of energy �owing in, conversion
matrices are used (again optionally di�erent per level). �e conversion matrices can
depend on the status of the device. For example, a micro-CHP consumes electricity
during startup and produces electricity when it is running at full speed (so it is
possible to have energy streams of the same energy-type in and out).
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For bu�ering devices the maximum amount of energy which can �ow to or
from the bu�er depends on the State of Charge (SoC) of the bu�er and the bu�er
size. �e loss can also depend on the SoC, so a bu�ering device needs to keep track
of its status too. �e decision is how much energy �ows in or out the bu�er.

�e amount of energy consumed by consuming devices is normally �xed once
it has been switched on. However, when the energy streams are optimized the
load of (some) consuming devices can be shi�ed in time, or it can be decided to
temporarily switch o� a device.

�.�.� ������� ������� �������

Asmentioned before, the basis of themodel are devices and energy streams between
these devices. Every device has certain streams in and/or certain streams out. Each
stream consists of a �ow of one energy-type. Input and output streams of devices
are coupled, so energy can �ow between devices. To manage these �ows in a proper
way pools of energy-types are introduced. Each pool is of a certain energy-type
and combines streams of this energy-type. More precisely, a set of input and output
streams of the given energy-type are combined to the pool and this pool has to be
in balance, i.e. it has no loss. �is means that the amount of energy �owing into the
pool is equal to the amount of energy �owing out of the pool.

For example, in most houses all electricity producing and consuming devices
are connected to one grid in the house. Electricity can �ow from every electricity
output stream to every electricity input stream. On the other hand, hot water
�ows from the boiler via a pipe to the hot-water bu�er and via another pipe to
the consuming devices. �is leads to two separate “hot water pools” in a house, as
depicted in Figure �.�(a). Note that also a third ‘arti�cial’ heat pool is present, which
models the loss of the heat bu�er. Summarizing, within every pool one energy-
type is transported and every stream is connected to one pool. �e amount of
energy �owing from and to a pool can be limited due to limits in the transportation
medium. �is introduces a lot of expression power. For example, we can model
the situation that (a part of) the house is protected with an Uninterruptible Power
Supply (UPS) system.

�.�.� �������� �����

�e complete model of a house combines the four di�erent types of devices and
the pools. �is enables the possibility to model all energy streams of a complete
house. An example of such a model is shown in Figure �.�(a). �is house consists
of multiple electricity consuming appliances, central heating, a heat bu�er and a
micro-CHP.�is model of the house can easily be extended with other energy-types,
e.g. the water stream, the reactive power or Photovoltaics (PV) on the roof.

�e concept of devices and pools can also be used to model the whole energy
supply chain, as depicted in Figure �.�(b). For example, electricity can be generated
by a conventional power plant and/or by a wind turbine, which is than transported
via the grid (in the form of a pool) to the houses.
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(a) Model of domestic energy streams.
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(b) Model of energy streams in the network(s).

Figure �.�: Example instances of the given energy models

When using the model, certain constraints have to be respected. First of all, all
streams should be within the bounds set by the devices. Furthermore, the energy
�owing in and out of a device has to be in balance. �e sum of the �ows in and out
of a converting device has to be zero. �e sum of the �ows in and the �ows out of
a bu�ering device has to be equal to the change of SoC. In other words, for every
device a valid option from its set of possible options Os has to be chosen. Finally,
the energy streams within a pool have to be in balance, i.e. the sum of �ows in and
out should be zero. When all the pools and appliances are in balance, the complete
energy chain in the house is in balance.
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�.�.� ������ ����� �����������

�e proposed model describes the energy streams within a house on a device level
in a generic way. It is based on devices and energy streams between these devices.
�e energy streams are separated in �ows of di�erent energy-types, from heat
and electricity to sunlight and windenergy. Devices exchange, bu�er, convert or
consume energy streams. Energy �ows between devices via pools, where every
stream of every device is connected to a pool and there has to be as much energy
�owing into the pool as out.

For every device limits for the exchanging devices, conversion matrices for the
di�erent levels of converting devices, etc. are de�ned. Furthermore, the model
de�nes a framework to model the di�erent devices. Each di�erent device needs to
be modeled using this framework, for example using an internal state machine.

Formally, as described in [��], this means that for each building a set of energy-
types EC is de�ned. For every energy-type ec ∈ EC at least one pool is de�ned,
resulting in a set of pools P:

P = ∪pec ,

where pec = {pec� , ..., pecNec
}. Furthermore, a set of devices is present in every build-

ing. �ese devices are split up in exchanging, converting, bu�ering and consuming
devices:

Dev = Devex ∪ Devconv ∪ Devbuf ∪ Devcons ,

where Devex = {dex� , . . . , dexNex }, Devconv = {dconv� , . . . , dconvNconv },
Devbuf = {dbuf� , . . . , dbufNbuf } and Devcons = {dcons� , . . . , dconsNcons }. �ese devices
are connected to the pools via streams. Streams are uni-directional, there are
streams from the device to the pool and vice-versa:

str = (p, d), str ∈ Str, p ∈ P, d ∈ Dev ,

Str = Strp ∪ Strd .

�e amount of energy �owing through a streams is de�ned by x(p ,d) and x(d ,p).
Since the pools are abstract devices introduced for modeling purpose they cannot
contain energy, the sum of the energy �owing inside the pool should be zero at all
time:

�(p ,d)∈Str p
x(p ,d) = �

(d ,p)∈Strd
x(d ,p) ∀p ∈ P.

For every device d ∈ Dev an internal energy stream xd is de�ned. Not all values
for xd are valid, therefore a set of option Od is de�ned for every device. Since only
one option can be chosen, variable co ∈ {�, �} is introduced:

�

o∈Od
state

co = �.

An option exists of a valid interval for xd :

co × Fo ≤ xo ≤ co × To .
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�e internal value xd is the sum of all values of xo (note that only one can be
non-zero):

xd = �
o∈Od

xo . (�.�)

�e �ow through every stream in and every stream out of a device is de�ned by the
internal energy stream xd and a multiplication factor Mo(str):

x(p ,d) = �
o∈Od

Mo(p ,d)xo ,

x(d ,p) = �
o∈Od

Mo(d ,p)xo .

Since the state of a device changes, only a subset Od
s of all options Od is valid in a

certain state s. All options that are not valid in a state s should not be chosen:

co = �, ∀o ∈ Od
� Od

s .

�.� S��������

�e presented model forms the foundation for simulations of the energy streams
within buildings over a certain period. �e model describes the devices present in
the building and how the energy �ows between the devices. To be able to use the sim-
ulation model we need to include the notion of time and the corresponding changes
in production, transmission and demand, which is described in Section �.�.�. Fur-
thermore, themodel needs to be con�gured such thatmultiple types of buildings can
be modeled, for example representing di�erent households with di�erent devices
and usage. Section �.�.� described how the simulation model can be con�gured
and setup. Once the simulation model is con�gured and setup, a control system
present in the building needs to properly control the devices, which is described in
Section �.�.�. A�er simulation a certain period of time, the results of the decisions
made during simulation need to be analyzed. �e provided framework for storing
and analyzing results is described in Section �.�.�. In Section �.�.� some more detail
about the simulator architecture and implementation is given.

�.�.� �������� ����������

As mentioned above, the presented model in the previous section has no notion
of time, which needs to be added to simulate the dynamic behavior of the energy
supply chain. Possible options for this dynamic behavior is to create a continuous,
event-based or a discrete simulation. In a continuous simulation, all streams need
to be described using a continuous function and requires a continuous analysis and
control. Furthermore, within the optimizationmethods also continuous predictions
of energy demand and production have to used.

For a discrete simulation the simulation horizon is divided into a set of consec-
utive time intervals. �e number of intervals depends on the length of the planning
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horizon and the chosen length of the time intervals. For example, a whole day
(�� hours) can be divided into �xed time intervals of �ve minutes, resulting in
��� consecutive time intervals. During each time interval, the energy �ows between
the devices can be determined. �us, for each time interval for each device a new
set of optionsOd

s is determined, fromwhich the control system present in the house
takes a decision.

An extension to a discrete simulation is an event based simulation, where entities
in the simulation model can trigger events. Events can for example be reaching the
minimum level of a bu�er, or switching on a consuming device. Events need to
be triggered when something changes in a device, requiring a new decision to be
made by the control system. �e advantage of an event based simulation that only
decisions need to be made when something has changed. However, events can be
highly correlated, resulting in continuing chain of events. One can argue that there
can be timed events, which basically results in a regular discrete simulation.

We have chosen to use discrete simulation since is allows a less complex analysis
and control. Only at the beginning of each time interval, the control decision has
to be made, which remains �xed during the whole time period. At the end of each
time interval, the internal states of the devices are updated once and the new set
of options Od

s for each device d ∈ Dev is determined. In other words, in each
time interval the simulation model describes the status of the building in that time
interval. �e control system chooses an option for each devices, resulting in the
amount of energy �owing between the devices during this time interval.

When using a discrete simulation, one has to choose a proper value for the length
of a time interval. On the one hand, a larger time interval makes the simulation less
accurate. When using a large time interval, very dynamic behavior is not visible
since the energy �ow is only determined for whole time interval. �is makes the
simulation less complex and faster, since less decisions have to be made. However,
if one wants to perform an accurate simulation, a short time interval length is
preferable. A �ve minute time interval is a good tradeo� between accuracy and
simulation speed [��].

�.�.� �������������

�e simulation model describes the energy �ow between the devices present in the
building, and by using a discrete simulation the dynamic behavior of the devices
and their usage can be simulated. Using the simulation model we should be able
to model a range of buildings and devices. During simulation we must be able to
create di�erent instances of the model, representing di�erent mixtures of buildings
and devices.

In the simulator, an instance of a model can be con�gured. �e work�ow in
the simulator is to �rst con�gure the di�erent entities present in the grid. First, all
the di�erent kinds of devices implemented in the simulator, which are described in
more detail in Section �.�.�, can be con�gured. A device might have changeable
parameters, e.g. the capacity of a heat store, or the heat production capacity of a
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micro-CHP.�ese parameters are stored in con�guration �les, describing a certain
version of that speci�c device.

A�er con�guring each device, the devices are grouped together in a building.
Since this work is mostly focussed on households, the devices are grouped in a
house. Within a house, energy pools can be added and the streams of the devices
present in the house can be connected to each other. Grid connections can be
represented using exchanging devices. A�er specifying the devices present in the
house, and determining their interconnections, the controller (see Section �.�.�)
can be selected. �e group of devices, the energy pools and the controller are stored
in a house con�guration �le.

Similar to the grouping of devices in a house con�guration, a grid is constructed
by grouping a set of houses. In a group, a mixture of di�erent house con�gurations
can be combined to create a representable mixture of buildings present in the grid.
By simply adjusting a parameter in the con�guration �le, multiple scenarios can be
easily simulated.

A�er con�guring the grid, global parameters of a simulation can be con�gured.
In a simulation con�guration, the grid that has to be simulated can be selected
and parameters determining the time span and the length of a time interval can be
con�gured. If parameters of an individual device, like for example the demand, is
de�ned with a di�erent time interval length, the simulator automatically converts
these parameters to the con�gured time interval length setup in the simulation
con�guration.

Figure �.�: Con�guration of a house

Since every entity (devices, houses, controllers) in the simulator can be con�g-
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ured and has di�erent con�gurable parameters, each entity available for simulation
is responsible for providing a Graphical User Interface (GUI) where that entity can
be con�gured. An example of the GUI to con�gure a house is depicted in Figure �.�.
In the �gure, you can see tabs to add the four device types, the pools and how to
connect the streams.

Stochastic variation

Using the structured approach as presented above of creating a con�guration of
the devices, houses, controllers, grids and simulations the simulator provides a lot
of �exibility to simulate di�erent scenarios. As stated in requirement � on page ��,
the simulator must be able to simulate a realistic mix of buildings and devices. By
creating a realistic mix of buildings in a grid, this can be partly achieved. By properly
assigning the available devices to the houses and con�guring realistic demand
pro�les for a house, a realistic demand pro�le for the grid can be simulated. However,
not every building is equal and the behavior of the residents is di�erent as well.
�erefore, the simulator provides a framework to add stochastic variations to the
demand pro�le. �e simulator provides several distributions (uniform, exponential,
Weibull, normal and Poisson), which gives enough �exibility to create a realistic
mix of devices.

In the simulator, the demand pro�le of each (consuming) device can be varied.
�e start time of device can be shi�ed and/or the total load pro�le might be higher
or lower. �e shi�ing of the start time can be used to simulate human behavior. �e
adjustment of the load pro�le simulates the di�erences between individual devices
of the same type.

On top of the individual device changes, a variation can be added to an individ-
ual house. Using this variation, the overall energy pro�le of a house can be adjusted.
Using this approach, a good variation is made, preventing that only exactly identical
houses are simulated.

�.�.� �������
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dx�
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Figure �.�: Arti�cial cost function for three options of a device

A�er instantiating a simulation instance, based on the simulation con�guration,
the simulator will determine the energy �ows between the devices for each time
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interval. In every time interval a valid option for the devices has to be chosen
such that all the pools are in balance. In a house, a set devices Dev exists, and the
controller has to control all devices in this set. As described earlier, each device has
as set of possible options Od on how to control the device. Based on the state s of a
device, only a subset Od

s of O might be valid options to chose from. As mentioned
above, a controller present in each modeled house is responsible for determining
the right set of control signals to all the devices, i.e. choosing the right options from
the sets Od

s for each device.
As described in Section �.�.�, each option o of a device (o ∈ Od ) describes the

possible amount of energy �owing in and out of the device using the variable xd .
An example of a xd with three valid intervals is given in Figure �.�. �e value of xd
in this example should be chosen on one of the intervals F� ≤ xd ≤ T�, F� ≤ xd ≤ T�
or F� ≤ xd ≤ T�.

�e introduced constraints force all technical and non-technical constraints
to be satis�ed (e.g. balance in the pools and supply all demand). However, within
these constraints o�en multiple sets of values for xd for every device can be chosen.
For example, all electricity can be imported from the grid or it can be (partly) drawn
from a battery. �erefore, costs are assigned to every possible value of xd . In other
words, a cost function is de�ned for every device expressing the preferences of
the residents, wearing of the devices, SoC of the bu�ers, etc. �e cost functions
should express the ‘quality’ of the decision for a certain value of xd . Some decisions
are more preferable than others for the residents, e.g. temporarily switching o� a
television is less desirable than temporarily switching o� the freezer. Furthermore,
switching on and o� a device too o�en may lead to wearing. Finally, the amount of
electricity imported or exported is topic of desirability, depending on the objective.
�ese preferences can be expressed using cost functions. �e costs exist of costs
for picking an option (e.g. switch a device o�) and the costs for the energy stream
(e.g. �ows from/to bu�ers). �erefore, the costs for every option exist of a part A
depending on the internal energy stream xo of the device and a �xed part B for
choosing the option: Ao × xo + Bo . For example, if a device is on and it is preferable
to keep it running, a high value of B can prevent it from being switched o�. Or, if a
device is not even allowed to switched o�, the option of switching the device o� is
not added to set of possible options Os for that speci�c device.

In Figure �.�(a), an example cost function of a freezer is given. Goal of the
freezer is to maintain within certain temperature ranges, preferable without as less
runs as possible to minimize wearing. �erefor, there must be costs associated with
switching on or o� a freezer, dependent on the temperate. If the temperate is higher,
the freezer not allowed to stay o� and therefore the cost of switching on becomes
lower. A similar rule exists for switching o�. In the freezer example, no costs A
dependent on the amount of energy �owing is used since the costs of electricity
consumption is represented by grid import. �e cost function of the grid import for
example can solely depend on the amount of energy imported/exported, as shown
in Figure �.�(b).

Using the arti�cial costs de�ned for every device, the controller has to chose the
best option for each device. �e controller has to solve an optimization problem, in
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(b) Costs for importing/exporting electricity
via a grid connection (via A)

Figure �.�: Example costs functions

which for all the devices a proper value for xd has to be chosen. Due to the arti�cial
costs the optimization problem is reduced to a cost minimization problem with
constraints:

minimize �
d∈Dev

tcd ,

where
tcd = �

o∈Od
s

Ao × xo + Bo × co .

�e big advantage of using this approach with generic cost functions is the
added �exibility. Devices and their behavior can be presented to the controller in
an abstract way, without knowing the internals of that speci�c device. �is allows
the integration of new, future devices in the same control methodology.

Enhanced control

�e controller present in the house is responsible for choosing the right set of options
for all devices present in the house. In each time interval the devices update their
valid option setOd

s and the corresponding costs functions, enforcing proper control
of the devices. Energy balance constraints are added to the cost minimization
problem to ensure the correctness of the model and the energy �ow.

If we consider a normal house without intelligent control as described in Fig-
ure �.�(a), the heat consumption just appears, i.e. no information on the demand is
known in advance to the controller. Whenever there is a central heat or hot tap water
demand e.g. a resident taking a shower, the heat demand appears to the controller.
In the given situation, the controller just supplies the heat demand, both central
heating and hot tap water, by the heat bu�er. �e only decision the controller has
to take is determine when to start the micro-CHP, and this is done when the heat
bu�er level drops below a certain threshold level. In a normal house the electricity
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consumption also just appears and together with the use of the micro-CHP this gives
a total electricity �ow in the house. �e electricity surplus or shortage is simply
exchanged with the grid. In other words, the only decision to be taken is when to
start the micro-CHP and that decision is based on the level of the heat bu�er.

More sophisticated control algorithms may be used to optimize runtimes of
converting and consuming appliances and make smart use of the bu�ers. For
example, some (expected) limitations about future states of the device, i.e. expected
set Od

s and their corresponding costs functions, can be taken into account when
controlling a device.

Furthermore, controllers might use predictions about future energy demand
to optimize the runtime of devices. As described in Chapter �, information about
historical demand data and harvested local data can be used in a forecasting scheme,
determining the scheduling freedom of a device. Using the predictions, the con-
troller is able to determine what the e�ect of a decision is on the future. A controller
can be extended using Model Predictive Control (MPC) [�] to not only take the
current time interval into account, but also future time intervals using short term
predictions. More details about MPC in the local controller can be found in [��].

In the simulator, a so�ware interface is implemented to handle devices that are
able to perform prediction and give information about their possible future states.
Although it is expected a real controller present in a real house will be executing
the forecasting, the forecasting has been abstracted to the devices in the simulator.
By shi�ing the forecasting intelligence into the devices, the implemented controller
stays device agnostic and generic, allowing easy addition of new devices.

�.�.� ����� ���� �������

�e house controller is responsible for properly controlling the devices in a house.
However, one of the possibilities of Smart Grid technology is to incorporate co-
operation between di�erent houses and/or a global controller cooperating with
multiple houses into the control scheme. �e house controller, also called the local
controller, can be extended to be able to communicate with other controllers, and
can be in�uenced by using steering signals received from external grid controllers.
�e grid controller has its own objective and is able to cooperate with/steer a (large)
group of house controllers. For example, information about the individual houses
can be used to determine a planning for a group of houses and their corresponding
devices (step two of the three step methodology). Dependent on the planning
methodology and the complexity of the planning problem, it may be necessary to
limit the amount of houses that a certain grid controller is responsible for. �e
devision of the problem into multiple subproblems, as described in Chapter �, leads
to a scalable solution.

�e limitation on the number of houses a grid controller can steermay lead to the
use of many grid controllers. Furthermore, the grid controllers too may cooperate
with other grid controllers, possibly in a hierarchical structure, as depicted in
Figure �.�. Using this approach, the overall grid is split up into di�erent so called
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(b) Steer maximal � controllers

Figure �.�: Hierarchical structure of the grid infrastructure for �� houses

subgrids, each with their own planner. Again, subgrids can be divided in the same
way into a number of subgrids.

�e controllers present in the grid must be able to cooperate with each other,
requiring communication protocols on top of communication links. �e simulator
provides a generic framework that is able to divide a grid into a number of subgrids,
creating and setting up grid controllers for each subgrid and creating communica-
tion links between all the controllers present in the (sub)grids. �e simulator can
automatically (recursively) divide the group of houses, as depicted in Figure �.�(b),
over multiple subgrids. When such a tree approach is used, the grid controller can
cooperate with either a group of houses, or a group of other grid controllers. Based
on the limitation of the number of houses/controllers a grid controller can plan for,
the framework can automatically instantiate and interconnect extra grid controllers.

�.�.� ������� ��� ������� ��������

During simulation, the behavior of devices and the energy �ows between the devices
is simulated. However, a simulation is only useful if the results of a simulation can
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be analyzed. In this section, the logging and analysis framework of the simulator is
discussed.

�e simulator provides a generic logging framework which each entity in the
simulation can use to store (intermediate) results. For example, the electricity
demand of a device can be logged per time interval. Using this information, the
quality of the control algorithm can be analyzed.

Dependent on the simulation, not all data generated by all devices has to be
analyzed and thus logged. �erefore, per entity logging can be enabled and disabled
when con�guring the entity. Furthermore, if for an individual house logging has
been disabled, all the corresponding devices in that house con�gurations will not
log their data as well.

Figure �.�: Results analysis window in the simulator

Using the logging framework, the simulator provides GUI elements to analyze
the results (see Figure �.�). In the results GUI, data varying over time can be displayed
as graphs. Furthermore, overall information about the whole time period can be
displayed. �e simulation results can also be stored to disk and can be loaded later
to analyze di�erences between multiple simulation con�gurations.

�.�.� ��������� ������������ ��� ��������������

Based on the energy streammodel and the requirements set in Section �.�, a so�ware
design and implementation of the simulator has been designed and implemented.
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�e simulator has been designed using an object-oriented approach, where the �++
programming language is used to implement the so�ware.

House Device Consumer

Converter

Bu�er

Exchanger

House
controller

Pool

Subgrid

Grid

Grid
controller

Grid
controller

Communi-
cating

controller

Client

Server

�

*

*�� �

*
�

�*

�*
�

+

Steering signals

Steering signals

Simulator control

Figure �.�: Design of the model and the network architecture.

For each model-entity in Figure �.�, a separate class is built. Flexibility is ob-
tained by de�ning the devices and controllers as abstract classes. In the abstract
classes minimum required functionality is implemented such that all requirements
of the model are met. An implementation of an actual element consists of a class
that extends the abstract class and implements the abstract de�ned functionality.
Optionally, standard behavior can be adapted by overriding the corresponding
functions. In this way the class implements the speci�c behavior of the element.

Although all devices have the same interface in order to be treated equally
by the controller, still four pre-de�ned subclasses of devices are speci�ed. All
device-category speci�c basic behavior is implemented in these four abstract classes
representing Converters, Exchangers, Consumers and Bu�ers. In each of these four
subclasses, basic elementary features required by the corresponding device-category
are implemented. All bu�ers for example have a certain State of Charge, while all
consuming devices have a certain demand pro�le. Using such an approach, only
limited amount of code has to be written to add a new device type to the model.
More precisely, only roughly ��� lines of codes have to be written to add a new
device implementation.

For each of the four devices categories, a number of devices has been imple-
mented, which are discussed brie�y:

Converter Up to now, a High E�ciency Boiler, a WhisperGen micro-CHP appli-
ance and a GenericConverter class are the converters available in the sim-
ulator. �e �rst two classes represent real life-appliances with their device
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speci�c characteristics. For example, a WhisperGen micro-CHP appliance
has limitations like minimum runtime and minimum cool-down periods.
�e GenericConverter class is a basic converting device which can convert
one energy stream into another with a con�gurable e�ciency, and can be
used to model converters without state.

Consumer �e available consuming devices within the current simulator are a
standard appliance and a freezer. A freezer is a device with keeps tracks of
the internal temperature. Based on the internal temperature, the set of valid
options and costs functions is determined each time interval to ensure the
internal temperature stays within the speci�ed bound. �us, based on this
temperature the electricity demand is determined.
A standard appliance can model appliances which have a certain prede�ned
demand pro�le. A demand pro�le is determined by the time interval the
device is switched on and a sequence of electricity demand values. For ex-
ample, a lamp has a �xed pattern once it is switched on. Its corresponding
demand pattern is for example that it switches on at �pm and has a constant
electricity demand for � hours of ��W. However, other demand sequences
are also possible, like the changing electricity demand of a washing machine
during the di�erent phases of a washing cycle. A standard appliance can be
con�gured to have a start time and a pre-de�ned demand pro�le, consuming
one or multiple energy-types. To create di�erent instances of the same house
type, on the start time and runtime of these appliances a stochastic variation
can be added to model more realistic user pro�les.

Bu�er A Gledhill heat store and an implementation of the Kinetic Battery Model
(KiBaM) [��] are available bu�er devices. �e heat store can be con�gured
to be of di�erent sizes. Using this size parameter, the e�ect of the size of the
heat store can be analyzed. �e KiBaM models a realistic battery, emulating
the characteristics of a real battery.

Exchanger Only a single exchanging device type is implemented. Each exchanging
device can exchange one energy carrier. For each time interval of the simu-
lation, a limitation on the amount of energy that can be exchanged can be
con�gured. For example, a electricity connection to a house can be limited to
�� A or the amount of wind imported to the house can be set to a prede�ned
pattern.

�e devices are connected with each other using pools, which are also present
as a separate class. A pool object keeps track which devices are connected to that
pool, allowing validation of the required energy balance in each pool.

Using the house class, all the devices and pools are connected and grouped.
Furthermore, a house controller, is assigned to a house here. �e house controller
is delegated, allowing multiple implementations of a house controller. For example,
more advanced house controllers with di�erent control strategies can be imple-
mented and used to analyze the e�ect of the new control algorithms. Due to the
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abstract de�nitions of the device class, the same interface to communicate with and
control devices can be used.

�e grid class is responsible for grouping and creation of all the houses during a
simulation. Although the model support pools between each house, a simpli�cation
has been made that the grid has no limitations on transportation and ‘production’.
Limitation for each household, for example the maximum amount of �ow to each
household, can be enforced using the exchanging devices. �e grid also handles the
limited amount of houses a grid controllers can steer and creates and con�gures a
hierarchical tree structure of multiple grid controllers, as depicted in Figure �.�(b)
on page ���. Although depicted in this �gure as two separate classes, in the actual
implementation only one class is used which can function as the grid and as a
subgrid.

Since the house controllers can cooperate, and thus communicate, with other
controllers, a basic CommuncatingController class has been implemented to handle
the communication. It provides a framework in which a controller can become a
server (for example the top grid controller), a client (for example a house controller)
or both (all the intermediate grid controllers).

�.� D���������� ����������

Up to know, the simulation model and and the translation of the model into a
simulation design and implementation have been given. �e simulation model
is �exible and versatile, but it also comes with a cost of a higher complexity to
determine the energy �ows. To speed up the simulator and enable the possibility of
simulating a large group of house, a distributed version of the simulator has been
developed, which is discussed in more detail in this section.

As discussed in the previous sections, all the energy pools must be in balance,
which can be reached in many di�erent ways with di�erent associated costs. De-
termining balance for all energy pools with minimal costs for all time intervals
makes a simulation with many devices and many houses a computational intensive
job. To keep the simulation time within reasonable limits, the computation can be
partitioned in smaller parts and distributed over multiple computers via a network.
Considering the entities in the model, the model has a lot of opportunities for
parallelization. Houses are independent of one another, allowing these entities to be
simulated on di�erent machines. Furthermore, within a house, a house controller
has to decide which options are chosen for each device. Once this decision is made,
devices may need to update their internal state. �ese updates can all be performed
in parallel.

For this reason, the simulationmodel is extendedwith a server-clientmodel (see
Figure �.�). �e server has three responsibilities. �e �rst task is the con�guration
of a simulation. A con�guration de�nes a grid and a possible grid controller. A
grid consists of a group of (di�erent kinds of) houses. A house consists of multiple
devices, where each device is connected to one or multiple pools. As mentioned
earlier, each house has a house controller.
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Each entity, i.e. the grid, house controllers, devices etċ, can be con�gured with
the GUI at the server. Once a con�guration is built, it can be simulated. When a
simulation is started at the server, it automatically distributes the houses con�gured
in the grid over so called subgrids and sends the con�guration for each subgrid to
each connected client.

During simulation, information is exchanged between the server and the clients.
�e server is responsible for synchronizing the clients, since some clients may be
faster than others.

When all clients are �nished, the server is responsible for aggregating all local
simulation results into a global simulation result. When all data is aggregated, it
can be analyzed on the server. Since the amount of data can be quite substantial,
simulation results are kept at the clients as much as possible. Only the relevant
information required to aggregate (sub)grids and information about the simulation
results are requested by the server. For example, all houses, controllers and devices
can generate simulation results. On the client, these results can be displayed in the
GUI via text or plots. �e GUI needs to knowwhich information can be displayed and
on which client this information is available. When certain data is requested, the
server looks up the origin of the information and sends a request for the information
to the client. �is minimizes network tra�c and the amount of required memory at
the server. When a simulation has to be saved (to disk) for later analysis, all received
information is stored directly to disk, minimizing the amount of data stored in
memory.

�e division of the grid into multiple subgrids enables the possibility to create a
hierarchical structure. For example, multiple neighborhoods can be simulated. Each
neighborhood consists of a mixture of di�erent houses with di�erent usage pro�les.
�is mixture of neighborhoods can be divided into di�erent subgrids, which can
be simulated at di�erent clients. �e grid controller at the server cooperates with
the grid controller of each subgrid on the clients. Each grid controller of a subgrid
cooperates with both the main grid controller and each house controller. An
example of such a hierarchical approach is the the creation of a Virtual Power Plant
[��]. �e goal here is to optimally control a large group of micro-generators, like
micro-CHP appliances, to generate a certain electricity pro�le. Objectives can be to
minimize purchase costs of energy retailers or to ensure stability on the electricity
network. Due to the large size of the �eet, it is impossible to optimally control the
�eet centrally [��]. By dividing the whole control system in smaller subsystems,
the subgrid controllers and house controllers can optimize the runtime of the
micro-generators within the subgrid. �e approach leads to a faster, more scalable
system.

�e network stack provides an interface to facilitate the communication between
the controllers. Another advantage of this approach is that also the communication
requirements between the controllers in a real life setting can be analyzed. For
example, characteristics of a certain communication medium like GPRS can be
emulated. All data sent between the controllers can be sent via this emulated
communication channel. Communication properties like delay, packet loss or
limited bandwidth can be simulated. Using such an approach, the amount of
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required bandwidth or the fault tolerance of the controllers can be determined.

�.�.� ��������

Server Client

WelcomeMessage
SimulationMessage
Con�gInfoMessage
Con�gInfoMessage

RequestCon�gMessage

Con�gMessage

SimulationMessage

TickMessage
TickMessage

StoreResultsMessage
ResultsInfoMessage
RequestDataMessage
DataValueMessage

Con�guring

Simulating

Figure �.��: �e developed network protocol

One of the requirements of the improved simulator was the ability to simulate
larger groups of houses. By distributing the houses over multiple computers, the
memory and computational requirements of the simulation are spread overmultiple
computers. To make the approach scalable the network overhead has to be limited,
requiring a fast and e�cient protocol.

Since a simulation is distributed over multiple computers, all information re-
quired for a simulation has to be available at each client. As a consequence, the
protocol has to thus be able to distribute all required information prior to the
construction of the (sub)grids, houses etc.

Based on the �ow of a simulation, a protocol between the server and the client is
developed. A�er connecting, a welcomemessage is sent to con�rm that a simulation
client is connected and not some random process.

When the user selects a simulation con�guration to be simulated, the server
automatically distributes the required houses over the connected clients. Simulation
con�gurations are simple �les, which can be easily transferred. For each client, a
new con�guration �le of the subgrid is created, and information about this �le is sent
via a SimulationMessage. When the client retrieves this SimulationMessage, it �rst
looks if it has a cached version of the con�guration �le. If it has a cached version, it
has to check whether this �le has been changed since it was obtained. �is is done by
sending a Con�gInfoMessage, which contains the �lename of the con�guration and
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a hash of its contents. When the server retrieves a Con�gInfoMessage, it constructs
a Con�gInfoMessage from its own con�guration and sends it back to the client.
When the hashes are equal, the �le is up-to-date.

If the hashes are not equal, or when the con�guration �le did not exist at the
client, a RequestCon�gMessage is sent. When the server receives such amessage, the
�le is read fromdisk, compressed and sent to the client. Once the con�guration �le is
up-to-date at the client, it is scanned for dependencies. For example, a grid consists
of houses and houses have their own con�guration (�les). For each dependency,
their con�guration �les are exchanged in a similar way. When all con�guration
�les are up-to-date, the client con�rms it has �nished the con�guration phase by
sending a SimulationMessage to the server.

When all clients are con�gured, the simulation can start. Since a discrete
simulation is used, the simulation starts by simulating the �rst time interval. In
each time interval, all the entities in the model receive a so called ‘tick’, signaling
the start of a new time interval. �erefore, a�er con�guring the server sends a
TickMessage to simulate the �rst tick.

Each client simulates the time interval and when it is done it con�rms replying
with a TickMessage. �e server waits for all clients to con�rm their tick, and then
sends a new TickMessage to each client. �is way, all the clients are synchronized
with each other, which is required when simulating a global optimization algorithm.

When all time intervals are ticked, a StoreResultsMessage is sent. During this
phase, statistics and information about the whole simulation are calculated at the
clients. �e completion of this phase is con�rmed by each client with a ResultsIn-
foMessage. �is ResultsInfoMessage contains information about which simulation
results are available at the client. Note that all the results are still stored distributed
over the clients. �e server only collects where the information is stored.

Since the grid is split up into subgrids, the server combines the subgrids into
a global grid by aggregating the data. When data of a speci�c house or grid is
required, the server requests the data by sending a RequestDataMessage to the
client which has this data. �e client sends the required information to the server
with a DataValueMessage. A�er aggregating all subgrid data into a global grid, the
GUI on the server is informed that the simulation has completed.

When the simulation has to be saved to disk, or when information about the
simulation has to be displayed in the GUI, the server requests the required data from
the clients on demand. �is way, the amount of memory required on the server
and the amount of data transferred over the network is limited.

�e simulation results are discarded at the client locally when the client is
disconnected. Since it might be possible another simulation has to be executed,
the client automatically reconnects to the server, and the process starts again from
the beginning. Using this approach, a client can be installed on many machines,
creating a large cluster of simulation clients. Since the discovery of the server is
completely automatic, no user interaction at the client is required.
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Figure �.��: �e simulation so�ware architecture

�.�.� �������� ������������

Based on the model and the developed protocol, the simulation is split up into
multiple parts. �e basis of the simulator (the presented model) has been written
into a library. Since the server and the stand-alone GUI share user interface elements
to con�gure all the entities in the model, these elements are added to the library.

A ‘stand-alone’ simulation without a server/client model can be used for smaller
simulation instances. For small simulation instances which can be performed on a
single machine fast enough, it is not required to add the network overhead.

Added to the code base is the simulation protocol and the required �++ classes
for a server and the client. �e server is similar to the stand-alone version of
the simulator. With this program, the entities can be con�gured and simulation
con�gurations can be created. When one or more clients are connected to the server,
simulations can be performed and their results can be displayed. Note that the
server cannot simulate a con�guration, this always has to be delegated to a client.
�e client is responsible for the real simulation. Based on the con�guration received
from the server, the real model is calculated at the client.

�.�.� ����������

As mentioned in previous sections, the energy �ow during a time interval is de-
termined by the energy demand, the amount of available (stored) energy and the
production capacity of the producers. �e house controllers are responsible for
selecting the right set of options during simulation. As described in [��], the model
can be expressed as a Mixed Integer Problem (MIP). Using this approach, the valid-
ity of the model can be ensured by adding the proper constraints to the MIP. For
example, the balance within the pools can be easily expressed by requiring the sum
of the energy �ow in the pool to be zero. Furthermore, assertions in the code are
used to check that the assumed conditions remain valid. �e correctness of the
implementation of the other classes is checked using unit testing.

�.�.� �����������

�e developed simulator is used to analyze many use cases and scenarios, of which
some of the results are given in Chapter �. To simulate a large �eet of houses a lot
of computational power is required. �is is especially caused by the local control
algorithm that is executed every time interval for every house.
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Table �.�: Simulation speed (seconds).

1 house 100 houses 500 houses 1000 houses

standalone 1 47 234 490
network, one client 1 50 246 491
network, two clients - 28 123 245
network, three clients - 20 88 170

To measure the speed and the in�uence of the network layer the same scenario
is simulated for �, ���, ��� and ���� houses. In this scenario, each house consists
of multiple electricity consuming appliances, a heat consuming appliance (central
heating), a heat bu�er and a micro-CHP.�e objective is to act as a Virtual Power
Plant: an on beforehand determined planning of the runtimes of the micro-CHPs
should be met. �e planning is based on prediction of the heat usage.

�e scenario is simulated using the standalone version, the network versionwith
one client (measuring network overhead) and the network version with multiple
clients with similar speci�cations to analyze the speedup.

�e simulation times are shown in Table �.�. It can be seen that the network
overhead is negligible for large simulation instances and the speedup using the
network version is signi�cant. Simulating larger instances leads to less network
overhead, since the aggregation of the subgrids is determined by the amount of
clients, not the amount of houses. �e speedup is almost linear with the number
of clients (only a bit network overhead), the merging of the results at the end of
the simulation is done by the server and decreases the speedup slightly. Due to the
synchronization in the protocol, the speedup is limited by the slowest client.

�.� C����������

�e energy model and its translation to the simulator provide useful tools to analyze
current and future smart grid technology and their impact on the grid. �e model’s
�exibility enables the possibility to simulate the whole energy supply chain and even
future (smart) devices (requirements � and �). By combining a realistic set of devices
in a house and a realistic mix of house con�gurations to a grid, a realistic simulation
of energy �ow of houses and the whole grid can be simulated (requirements �
and �). �is is further improved by using the stochastic variation provided by the
simulator. By distributing the simulation over multiple PCs, both the simulation
runtime and memory requirements can be distributed over multiple machines
(requirements � and �). By distributing the logged data over multiple machines,
the amount of data is still feasible to store in Random Access Memory (RAM).�e
amount of data can even be con�gured on a device level, allowing �exible analysis of
simulation (requirement �). �e speed up reached using the distributed simulation
is determined by the slowest machine in the network, but scales almost linearly.
�e required communication framework of the distributed simulation can also
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be exploited to analyze the network requirements of cooperating optimization
methodologies (requirement �)

Although all requirements are met, still the simulator can be improved. As
mentioned above, the grid is assumed to provide and transport all the required
energy. Although the model provides the possibility to model the grid with real
devices for the production, storage and transport of energy, this is not implemented
yet and le� for futurework. Furthermore, in the current implementation the smallest
allowed time period is one second. For analysis of issues like power quality (for
example frequency deviation) and communication latency a shorter time period
may be necessary.
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CHAPTER�
R������

A������� – In this chapter the results of di�erent use cases are presented. Com-
mon in all use cases is that the heat demand forecasts, as determined in Chapter �,
are used in real situations. �e �rst use case, creating a VPP using a �eet of micro-
CHP appliances, shows that T����� is capable of reshaping the production pro�le to
a predetermined pro�le. Results show that a good tradeo� during planning between
bu�er size, forecast quality and allowed exploitation of the scheduling freedommust
be made.

In the second use case, a �eet of heat pumps is steered towards a �attened
pro�le. Although both a micro-CHP and a heat pump can be used for providing
heat to a building, their internal working and restrictions on how to operate the
devices are di�erent. An extra addition in this use case is the usage of replanning.
Like in the VPP use case, the planning program should reserve some capacity to deal
with forecasting errors locally, reducing the deviation from the planning.

In the last use case, again the objective is to steer the electricity pro�le towards
a �attened pro�le. In this use case, a mixture of micro-CHP appliances and heat
pumps are simulated. Where a micro-CHP appliance generates electricity while
generating heat, consumes a heat pump electricity while generating heat. Although
the devices have di�erent characteristics, they both respond to the shared steering
vector. However, changes in the steering vector have bigger e�ects on the micro-
CHP appliance than on the heat pump. �erefore, the costs functions, used during
planning, should be de�ned such that they are evenly sensitive to the steering signal.
Another possibility is to create a planner which generates a planning, respecting
the characteristics and limitations of the device, and extending the cost function by
adding additional costs for deviating from this planning.

In this chapter di�erent use cases are presented. Common in all use cases is that
the heat demand forecasts, as determined in Chapter �, are used in real situations.

Parts if this chapter have been presented at [VB:�] , [VB:�] , [VB:�] , [VB:�] , and [VB:��]

���
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In the �rst use case, described in the next section, we analyze the possibility of
creating of a Virtual Power Plant (VPP) using micro-Combined Heat and Power
(CHP) appliances using T�����. Section �.� describes a use case where T�����
is used to �atten the consumption pro�le of a �eet of heat pumps. In the last use
case, described in Section �.�, a �eet containing both micro-CHP and heat pumps
are steered. In this use case, we try to steer the mixture of devices to also reach a
�attened pro�le by steering the electricity consumption of the heat pumps toward
the periods where the micro-CHP appliance generates electricity.

�.� V������ P���� P����

�is work, as mentioned in the introduction, was part of the SFEER project. �e goal
of this project was the creation of a VPP using a large �eet of micro-CHP appliances.
Amicro-CHP appliance is a system that produces heat and— as a by-product during
the heat production — electricity. Current generation micro-CHP appliances are
fueled by natural gas. �ey can generate electricity at the kilowatt level which allows
these units to be installed in an individual home. �ey are connected directly to
the domestic heating and electrical systems, which leads to a very high e�ciency
(up to ���) in usage of primary energy. �e heat is used for the heat demand in the
home such as central heating, showering, hot water taps etc. �e electricity can be
used in the house or, when not needed, be exported to the electricity distribution
network.

�e (electricity) production of amicro-CHP appliance is heat driven, since it only
produces electricity while producing heat. Adding a heat bu�er (hot water tank)
decouples the demand and production of heat, within the limits of the heat demand
and the bu�er size. �is gives �exibility in the electricity production, allowing
the production of electricity on more bene�cial periods. For example, a peak in
the electricity demand can be seen when people get home. During this period,
electricity can be generated by the micro-CHP system and used within the home by
the appliances switched on. �e heat can be used for central heating or to �ll the
hot water tank. �e stored heat can be used the next morning for showering.

It is expected that micro-CHP appliances will replace the current high e�ciency
boilers [��]. For example, in the Netherlands, the target market in ���� for micro-
CHP appliances was �.�million households [��]. It is expected that in ���� between
�.� and �.�million households will have a micro-CHP appliance and is expected to
grow up to �million in ����. When the number of micro-CHP appliances becomes
high enough, generators can be virtually grouped together and become a VPP. By
controlling and smart scheduling such a �eet of generators a VPP may replace a
conventional (less-e�cient) power plant. Using a VPP instead of a conventional
one will result in a signi�cant reduction in costs and CO� emissions due to a more
optimal use of primary energy sources.

�e goal of the control system is to autonomously determine the scheduling
freedom introduced by the heat bu�er and use this scheduling freedom of the VPP
for commercial exploitation. Asmentioned in Section �.�.� on page ��, the electricity
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infrastructure always has to be in balance. �e transportation and distribution net-
work operators use di�erent control systems and corresponding electricity markets
to ensure this balance. As a result, balance has a value.

Since a VPP consists of many small generators, which can start and stop within
a couple of minutes, a VPP has the potential to be used on the short-term markets.
Dependent on the stakeholder of the VPP, the VPP can be used for balancing the grid
by a network company or to reduce purchase costs/penalties by a utility. Important
when using a large �eet of small generators is the available production capacity of
such a large �eet and the guarantee that this production capacity can be exploited. As
a consequence, to use a VPP, the production capacity of the �eet has to be forecasted
at reasonable accuracy. �is will ensure that the promised production capacity is
really available.

For micro-CHP appliances the electricity production capacity is based on the
heat demand. �us an accurate heat demand forecast is required. In Chapter � the
used approach in determining the heat demand for a household is described. To
test and analyze the possibilities of creating a VPP using T�����, in which these
forecasts are used, a use case consisting of �� houses equipped with a micro-CHP
appliances is used. In the remainder of this section �rst the determination of the
scheduling freedom and the exploitation of this scheduling freedom is explained.
�en the de�ned use case is described in more detail. In the last section, results and
discussion of the simulations are given.

�.�.� ����������� ��� ���������� ������� �� � �����-��� ���������

�e micro-CHP appliance together with the heat store are responsible for providing
heat to the house. �is heat store can be used only for hot tap water to provide a
generous supply, while the central heating is provided directly by a boiler. Another
possibility is using the heat store for both central heating and tap water. In this
approach, the micro-CHP appliance can be used to produce all the heat required in
the house, maximizing the electricity production of the micro-CHP appliance. In
this use case, a heat store providing both the hot tap water and the central heating
demand is used.

In order to provide the required heat demand, the bu�er should always contain
enough heat to supply the requested demand. �e state of charge of the bu�er
should thus remain above a certain threshold level. Once the state of charge drops
below this lower level, the micro-CHP should be started. A�er running the micro-
CHP for a while, the micro-CHP should be switched o� when the bu�er is (almost)
full. �is process is illustrated in Figure �.�.

However, the micro-CHP has some limitations on how the appliance can be
used. For example, a�er switching on a micro-CHP appliance, it takes a while
before it starts to produce heat at maximum level. In this startup period, the heat
and electricity production increases up to the maximum production capacity (see
interval S in the �gure). A lower level in the heat store is used to provide any heat
demand request while the micro-CHP is not producing heat yet.



thesis December 19, 2011 23:28 Page 120 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

���

�.�.
V
IRTUA

L
PO

W
ER

PLA
N
T

Le
ve
lo
ft
he

he
at
bu

�e
r

Current level

Lower Level

Upper level

Time

microCHP on/o�
Heat Production

S MR C MO

Figure �.�: �e use and limitations of the heat bu�er in combination with a micro-
CHP appliance

Once the appliance is running at full capacity, it has to keep running for at least
a minimum amount of time. �is minimal runtime (MR) ensures the appliance
makes longs runs instead of running in series of small runs. A�er the minimal
runtime has been reached, the device is allowed to switch o�, which normally is
signaled when the heat store is almost full. Once the micro-CHP appliance has
received a signal to switch o�, the Stirling engine still contains enough heat to
continue the heat production for a short period of time. During this cooldown
period C the heat production slowly decreases. To ensure that the heat being
produced during the cooldown period can be stored, the upper level switch point
must be chosen such that the heat store can absorb this heat at all times.

�e �nal constraint of the micro-CHP appliance is the requirement that once the
appliance has been shut down, it has to maintain o� a while before it can be used
for the next run. During this minimum o�ime (MO) the device is not allowed to
start.

Within the minimum and maximum level, the micro-CHP appliance is allowed
to start whenever is required, as long as the device constraints of the minimum
runtime and minimum o�ime are respected. �is �exibility is what determines
the scheduling freedom. Preferably, the micro-CHP appliance should be running
when the electricity prices are high, since then the purchase costs are reduced the
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most, or in case of exportation to the grid the electricity gives you the most pro�t.
�e problem with determining and exploiting the scheduling freedom of the

micro-CHP appliance is that once a decision on the runtime of the micro-CHP is
taken, it restricts the possibilities for a long period of time. �erefore, the chosen
time intervals to start amicro-CHPmust be chosen carefully. Due to these restriction,
the planning of a �eet of micro-CHP appliances is NP-complete [��].

In this use case a central planner described by Bosman et al. [��] is used to
determine the required production pro�le of the �eet, optimizing the pro�tability
of the runtime of the machine. Based on the prices of the day-ahead market (see
Section �.� for information about the available energy markets), the electricity
production of the micro-CHP is shi�ed towards the high-price periods. Using this
approach, less expensive energy has to be bought by an energy supplier, which in
this case is the operator of the �eet of micro-CHP appliances. During the planning
process other constraints, for example imposed by a grid operator, can be added.

To ensure that a local controller is able to work around forecast errors, not the
full optimization potential should be exploited by the planner. �e above described
upper and lower levels, together with capacity required by the real time controller
to cope with forecast errors, determine the (arti�cial) upper and lower bounds the
planner has to respect while planning.

�.�.� ��� ���� �����������

In this use case, a VPP consisting of �� houses equipped with a micro-CHP and a
heat store is used. �e currently commercially available micro-CHP devices based
on a Stirling engine have a � kW electrical and � kW thermal production capacity.
�erefore, in our simulation model, a micro-CHP appliance with this electrical and
thermal production capacity has been used.

For the thermal store, a �� kWh and �� kWh heat bu�er size has been used.
Using the �� kWh bu�er size, two di�erent planning settings have been used. In the
�rst variant, the planner uses the � kWh and � kWh as the lower respectively upper
bound on the allowed heat store level during planning. In the second variant, the
bounds are set to � kWh and � kWh as bounds, introduced more reserve capacity
for the real-time controller to handle forecast errors. Using the �� kWh bu�er size,
the bounds during planning are set to � kWh and �� kWh. It is expected that the
increased bu�er size introduces more scheduling freedom, allowing better steering
towards the desired periods of production.

To simulate the heat demand of �� houses, data extracted from our heat demand
database is used. �is database contains heat demand data of four households from
the beginning of January up toDecember ����, and of six houses fromOctober ����
up to February ����. Reusing the forecasting results from Chapter �, �� days with a
predicted heat demand between �� kWh and �� kWhhave been selected to represent
cold days. �e average forecasted heat demand (per day) was ��.� kWh, with a
standard deviation of �.� kWh. �e corresponding average real heat demand of
these days was ��.� kWh, with a standard deviation of ��.� kWh. �e forecasted
heat demand was thus on average �.� kWh higher than the actual heat demand,
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Figure �.�: �e APX electricity prices used

which is a substantial part of the heat store capacity. �is makes it very hard for the
real-time controller to cope with the forecast errors.

Planning the micro-��� appliances

�e objective of the planner is to maximize the revenue on the produced electricity,
using the prices of the APX market. �erefore, the planner steers the micro-CHP
appliances to produce electricity during the periods with a high electricity price.
�e used electricity prices, which are market prices for electricity of Nov �, ����,
used in use case are depicted in Figure �.�.

As can be seen in the table, during the morning period and at the beginning of
the evening, the prices are the highest. It is thus bene�cial to produce electricity
during these periods.

Since the planner tries to solve a maximization problem, the planner could �ll
the bu�ers as much as possible towards to end of the day, since this can produce
more electricity and may thus improves the desired objective. �erefore, we restrict
the amount of �exibility the planning can exploit. At the beginning of the day, all
the heat bu�ers are modeled to be half full. At the end of the day, the total amount
of energy stored should be less than or equal to the amount of energy stored at
the beginning of the day. �is way we ensure that only the actual heat demand is
generated, and enough �exibility remains for the next day.
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�.�.� �������

Using the simulator, the �� houses equipped with the micro-CHP appliance and
the heat stores have been simulated. First, these houses are simulated without
any steering to determine the reference case, i.e. see what happens without using
T�����. �e results of these reference simulations are depicted in Figure �.�. In
the �gure, clearly the morning peak can be detected. With both bu�er sizes, the
bu�ers are half full in the beginning. Due to the heat demand during the night,
these bu�ers are emptied at the start of the day, resulting in the �rst �lling cycle.
When in the morning these bu�ers are emptied by the morning heat demand peak,
all the micro-CHP appliances again start to produce heat and thus electricity. As
also shown in the �gure, the production peaks are very dependent on the bu�er
size.
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Figure �.�: Electricity production pro�le without any steering for the two bu�er
sizes

�e results a�er generating a planning for houses equipped with the �� kWh
bu�er size and the �-� kWh planning bounds are depicted in Figure �.�. Here
the in�uence of the planning can clearly be seen. As expected, the production of
electricity is shi�ed towards the periods with the highest price. However, since the
planning is generated based on the heat demand forecasts, the planning cannot
be reached for all time intervals. Furthermore, since the planning uses a very big
part of the scheduling freedom for planning, the real-time controller does not have
enough reserve capacity to handle the forecast errors. �e desired peaks at �h and
��h therefore cannot be reached.

In Figure �.� the results a�er introducingmore reserve capacity for the real-time
controller during planning, i.e. set the bounds to �-� kWh, is depicted. Due to
the restrictions added to the planner, less optimization potential is exploited, as
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Figure �.�: �e target and realized electricity production of the ��� (�� kWh/�-
�kWh bounds)

can be seen in the �gure by the more �attened desired pro�le. As a result, the
real-time controller is better able to follow the desired planning, resulting in a lower
mismatch between the planning and the realization of the planner.

By doubling the bu�er sizes and the corresponding bounds, more �exibility for
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Figure �.�: �e target and realized electricity production of the ��� (�� kWh/�-
�kWh bounds)
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Figure �.�: �e target and realized electricity production of the ��� (�� kWh/�-
��kWh bounds)

Table �.�: Quality �gures of the ��� use case

Bu�er Field Realization Planning Planning
size (Forecast) (Actual)

10 kWh Total production (Wh) 364000 389625 350875
1-9 kWh Average price (Euro/MWh) 30.39 30.35 31.30

10 kWh Total production (Wh) 367250 390250 354625
2-8 kWh Average price (Euro/MWh) 29.90 29.50 30.70

20 kWh Total production (Wh) 364625 392125 354375
4-16 kWh Average price (Euro/MWh) 31.68 30.26 31.78

the planner is introduced. �e results of this variation is depicted in Figure �.�.
Due the the extra �exibility, the desired pro�le resemblances the desired pro�le
in Figure �.�, where the production of electricity is steered towards the high price
periods. Furthermore, due to the bigger bu�er size and higher reserve capacity for
the real-time controller, the planning is followed better.

To quantify the results discussed above, the average price for electricity and the
Mean Absolute Percentage Error (MAPE) between the actual and desired pro�le are
used.

In Table �.� the total amount of electricity produced and the average price for
this production is given. In this table the values for the realization of the planning
and a planning based on the forecasted heat demand are given. In the last column
of this table values for a planning based on the actual heat demand are given to give
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an indication of the potential of the planner.
�e table shows, in line with Figure �.� up to Figure �.�, that the total amount

of electricity produced is less than was planned. However, the electricity that has
been produced, was mostly produced in the high price periods, resulting in a good
average electricity price for the produced electricity.

From Table �.� we can also see the potential of the planner by looking at the last
column is this table, where the results of a planning using the actual heat demand
is given. A bigger �exibility in the planner yields to a higher price for the produced
electricity, as was expected. �e higher �exibility, using a bu�er of �� kWh and
bounds on �-�� kWh clearly gives the best performance.

�e MAPE of the realization and the planned pro�le are �.��� for the �� kWh
bu�er size and �-� kWh bounds. Reducing the bounds to �-� kWh improved the
MAPE to a value of �.���. As expected, the extra reserve capacity for the real-time
controller results into a realized pro�le closer to the desired pro�le. �e MAPE of the
�� kWh case was �.���. �us although the real-time controller has some reserve
capacity for handling the forecast errors, the �eet has di�culties following a peaky
pro�le. From the graphs shown in Figure �.�we can see that the real-time controller
uses the reserve capacity to handle the forecast errors. However, around �h in the
morning, the capacity is not enough and deviations start to occur.

�.�.� �����������

As shown in this case T����� is capable of reshaping the production pro�le of a �eet
of micro-CHP appliances. Important in this approach is that the real-time controller,
the last step of T�����, has enough reserve capacity to be able to cope with forecast
errors. As shown in this use case by using a �xed bu�er size, but di�erent capacities
that can be exploited by the planner, that a conservative planning yields better results.
�e use of a larger bu�er introduces some extra scheduling freedom, leading to
more extremely planned pro�les. As result, due to forecasts errors, the real-time
controller has di�culties handling the forecast errors caused by the restrictions
set on the runtime by the micro-CHP.�erefore, a good tradeo� during planning
between bu�er size, forecast quality and allowed exploitation of the scheduling
freedom must be made.

�.� H��� ���� ��� ����

In this use case, the ability to reshape the electricity demand pro�le of a group
of households equipped with a heat pump using T����� is analyzed. In older
houses with less insulation quality, gas-�red micro-CHP appliances or conventional
high e�ciency boilers are o�en used due to their high production capacity of
heat. However, the buildings and especially the insulation quality of newly build
houses have improved. As a result, the heat demand of modern buildings is reduced
signi�cantly, allowing a converter with lower production capacity.

Heat pumps are increasingly regarded as an attractive option for domestic
heating. Instead of burning natural gas, diverts a heat pump heat from the ground
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or the surrounding air at a lower temperature to the house at a higher temperature
using mechanical work. �e process is similar to a refrigerator, but instead of
cooling the thermodynamical process is used for heating. However, during summer
the heat pump can be used for cooling as well.

Since no gas is required for heating, the gas demand of a house decreases
signi�cantly. Investments in the local gas distribution infrastructure in newly
developed neighborhoods becomes unattractive due to lower penetration of gas
applications [��] and higher insulation standards [��]. However, the lack of a gas
distribution infrastructure means that all activities in a building that normally
consume gas must be provided by another form of energy, mostly in the form
of electricity. Common gas consuming activities, like heating and cooking, can
be done using electricity, but they consume a lot of energy. Especially when the
heat pumps are switched on during periods when people are also getting home,
switching on their appliances and the electric cooking stove, a large amount of
electricity has to be transported and provided to the houses. Since most people
more or less have a similar living pattern, this leads to a high peak in the electricity
demand. Since the electricity distribution network must be able to provide these
high peak, extra investments have to be made in the distribution network, only
supplying these peaks. �ese investments in the electricity distribution grid only to
supply the peak lead to very high investment costs, and is due to the low utilization
not very e�cient �nancially.

�erefore, it is very bene�cial to reduce the peaks in the electricity distribution
network. By shi�ing the run cycles of the heat pump to low-demand periods, the
peaks can be reduced. �is spreading is possible by using a heat store in the house,
which introduces the �exibility of when to use the heat pump.

In the rest of this section, �rst the modeled heat pump and its characteristics
are described. �en the objective is given, and based on this objective an Integer
Linear Programming (ILP) formulation and the corresponding results are given.
Next, the obtained results by using the T����� approach are presented.

�.�.� ���� ���� �����

�e heat pump is classi�ed as a converting device: it converts heat of one temperature
to heat of another temperature, while consuming electricity. O�en, heat pumps are
used for heating, converting heat of a lower temperature to a higher temperature.
�erefore, the device has four streams: the power supply (electricity in), source
stream (heat in/out), sink stream (heat out/in) and loss (heat out).

�e e�ciency of a heat pump depends on the temperature di�erence between
the source and the sink element (∆T). �e Coe�cient Of Performance (COP) of
the heat pump is de�ned as the ratio of the heat displacement (from the source to
the sink stream) to the required work. A higher COP thus means a higher e�ciency.
At each instance in time, the device enforces this �xed conversion ratio between
inputs and outputs. We assume that the e�ciency of the heat pump is �xed.

�e performance of a heat pump is bounded, which we model by limiting
the electricity consumption. In our heat pump device model, the heat pump has
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a number of di�erent modulation levels. �e modulation level determines the
amount of electricity consumed by the pump and thus also the heat production of
the pump. A heat pump with one modulation point corresponds to a type which
does not support modulation.

Many heat pumps can in heating mode recover a large part of the drive energy
and contribute this to the heat sink. Whether this is possible can be con�gured by
connecting the loss either to the heat sink pool or to a loss consuming device. �e
loss is notmodeled as part of the COP, because that does not properly represent the
energy transfer between the heat source and the sink. �is becomes particularly
important when the heat source is fed from a �nite or billed resource.

During simulation, ��� houses furnished with a heat pump and a heat store
are modeled. Most houses are furnished with a �� kWh heat store. �e heat store
to some extent decouples the production and consumption of heat, introducing
�exibility regarding when and at which modulation level the heat pump operates.
�e start level of the heat store is chosen at ��� full and is the same for all houses.

�e heat demand of these ��� houses is again from our heat demand database,
where ��� days with a heat load between �� kWh and �� kWh are extracted (see
Appendix A.� for a detailed description). We consider this heat demand a represen-
tative heat demand for households with a heat pump installed.

Electricity

Electricity

Heat

Heat

Heat pump

Heat

Heat store

Heat

Heat demand

Figure �.�: Model of the house with a heat pump

�e overall model of a house is depicted in Figure �.�. Although there can be
more devices present in the house, these are considered as non-steerable and have
been abstracted away. �erefore, these are not included in the house model. �e
depicted heat exchange represents the heat extracted from the ground. For now,
this source is assumed to be unlimited. �e electricity exchange represents the grid
connection of the house, which can provide all the electricity required by the heat
pump. As described above, the heat production of the heat pump is determined by
its COP and electricity consumption. Since we are using the heat pump for heating,
both the heat output and the electrical loss energy-streams are connected to the
heat store via a heat pool. �e heat demand is subsequently supplied using the heat
store.

In this use case, the heat pump has �ve modulation modes and a maximum
electricity consumption of � kW.�e modulation modes are divided evenly over the
maximum electricity consumption, resulting in the following six heat production
modes: �W, ���W, ���W, ����W, ����W and ����W. For COP, a value of �.� is
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chosen. As we assume that the electrical loss can be fully recycled, an e�ective COP
of �.� is attained, a value representative for current soil-water heat pump systems.
�erefore, between �W and ����W of heat can be produced by the heat pump.

�.�.� ������� ��������

To determine the quality of the steering, the optimal solution is determined using
the following ILP formulation. First the simulated time period of one day is evenly
divided into TN time intervals. For each time interval t ∈ {�, . . . , TN} the heat
demand Ch ,t of house h ∈ H must be supplied. In our simulation, the heat pump
supports six modes, i.e. M = {�, . . . , �}. �e variable zh ,t ∈ M is introduced to
describe the mode of each heat pump at house h and time interval t. Based on zh ,t
the heat production can be calculated via Pz ⋅ zh ,t , where Pz is the heat production
capacity of mode z in one time interval. Similarly, the electricity demand (in W) is
determined using Ez via Ez ⋅ zh ,t .

�e goal of this use case is to decrease the peaks by �attening the electricity
demand pro�le of the group of houses. In other words, the �uctuation of the
electricity demand should be minimized. �is results in the following objective
function:

min
T
�
i=�
�����������

H
�
j=�

Pzz j , i −
H
�
j=�

Pzz j , i−�
�����������

+

T
�
i=�
�����������

H
�
j=�

Pzz j , i − Ĉ
�����������

,

where Ĉ is the average heat consumption determined via �
TN
∑

T
i=�∑H

j=� Ci , j .
Since the heat is supplied from the heat bu�er, the bu�er level must always be

maintained between a lower limit bmin and an upper limit bmax. �e heat bu�er is
depleted as a result of supplying the heat demand and can be �lled by generating
heat using the heat pump. �erefore, the following constraint is added:

bmin ≤ bstart +
t
�
i=� Pz ⋅ zh , i −

t
�
i=� Ch , i ≤ bmax ∀t ∈ T , h ∈ H,

where bstart is the begin level of the heat store (in Wh).
In the optimization aswell as the simulation, a time interval length of sixminutes

is used. �e maximum electricity consumption of the heat pump is ����W. Since
an e�ective COP value of �.� is used, a maximum of ����Wof heat can be produced,
which is ������ = ����W per modulation level. Each time interval is six minutes,
therefore Pz = ����

���� = ���Wh and Ez = ���W.
�e performance of our approach is quanti�ed using multiple metrics. �e

�rst metric is the diversity factor, which is the ratio of the sum of the individual
maximum demands to the maximum real demand of the system. In our case, this
is ����⋅���

Emax
, where Emax is the highest peak in the demand. �e second metric is �σ ,

where σ is the standard deviation of the electricity consumption, expressing the
variation of the load. A lower variation means less �uctuations, meaning that the
demand can be supplied more e�ciently. Furthermore, load duration curves are
used to visualize the capacity utilization. In the load duration curve the demand
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data is ordered in descending order of magnitude, rather than chronologically. A
load duration curve is very suitable to visualize the requirements and utilization of
the network capacity.
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(a) Demand curve of the ILP solution
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(b) Load duration curve of the ILP solution

Figure �.�: Results ILP solution

�e load duration curve a�er solving the ILP is given in Figure �.�(b). �e start
level of the heat store bstart = ����Wh, as in the simulations. As can be observed,
the start level of the heat store results in start up e�ects. For every time interval,
there is a heat bu�er level which provides the �exibility required for the given
objective. However, it takes a while to reach this heat bu�er level. �e limited
heat demand restricts the possible operation modes, resulting in a deviation from
the desired pro�le. A�er this startup phase, it is possible to achieve a perfect �at
electricity consumption pro�le with a maximum electricity demand of �.�� ⋅ ��� W.
�e corresponding �σ value is �.�� ⋅ ��� and the diversity factor is �.��.

�.�.� ������������� ������ ��������

�e ILP formulation of the previous section gives the optimal solution, exploiting all
the information available about future heat demand, the bu�er etc. �e ILP solver
uses the real heat demand data, implying a perfect heat forecast and knowledge of
each house including information about the heatpump, heatstore etc. In T�����, the
whole planning process is separated into multiple steps, each executed on di�erent
locations.

�e analyze how well the T����� approach can reach a �at pro�le, again a
perfect heat demand forecast is assumed. Only now the simulator is used, using the
T����� approach to steer the electricity consumption of the heat pumps. For the
heat pump, an initial planning program is created and via an iterative approach the
steering vectors are adjusted, as described in Chapter �. �e objective remained the
same, �attening the electricity consumption of a group of houses.
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(b) Load duration curve

Figure �.�: Results perfect forecasts case

�e results of this simulations are depicted in Figure �.�. As can be seen in the
�gure, the high morning peak is reduced signi�cantly. A more �attened demand is
obtained, as visible in Figure �.�(a). Looking at the load duration curve in �.�(b), a
far more �attened duration curve can be achieved. Most importantly, the highest
demand is reduced signi�cantly, requiring less (distribution) network capacity.
Although the results still show some �uctuations, the changes are relatively low.

�e �σ value went from �.�� ⋅ ��� (no planning) to �.�� ⋅ ��� (with planning).
�e diversity factor went from �.�� to �.��. �e consumption pro�le improved
signi�cantly: the highest peak decreased by ��� and the �uctuation (variation)
with ���, even when using a rather naive and straightforward planning method.
Exploration of the optimal solution showed that there is even more potential to
decrease peaks and �uctuations. Studying the simulation results in more detail
showed that the di�erences between the optimal solution and the simulation using
the T����� methodology are mainly caused by the planning methodology. Im-
proving this planning methodology by adding optimization on the lowest level is
expected to enhance the results signi�cantly. �is is le� for future work.

�.�.� ����� ���������� ���� ������ ������

�e previous sectioned showed that the T����� methodology can exploit the
scheduling freedom introduced by the heat stores. Although improvements can be
made with improved planners, the results are promising. To analyze the e�ect of
forecasting errors, simulations are performed in which the forecasted heat demand
values, as described in Chapter �, are used. Using the simulated annealing approach,
the best forecasting method is determined. �e heat forecasts are made on an
hourly time base and are evenly divided into ten time intervals, as determined by
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the simulation time interval length.
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(a) Demand curve
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Figure �.��: Results forecasts case

In Figure �.�� the results of using the forecasted heat demand data while plan-
ning is depicted. As can be seen in the �gure, still a more �attened pro�le can be
achieved. However, especially from ��h up to the end of the day more �uctuation
can be seen. �e corresponding �σ value is �.�� ⋅ ��� and the diversity factor �.��.

Replanning

�e developed planning program uses the complete scheduling freedom of the heat
store, resulting in quick deviations in case a forecasting error occurs. �erefore,
very likely a replanning is required. Normally, during replanning new improved
forecasts are made. Since this is not (yet) implemented in the simulator, this is
emulated by using forecasting function f . �is function combines the �� hour
ahead forecasted heat demand and the real demand that is used for the simulation.
Very short term forecasts o�en are of a higher quality then forecasts on the longer
term, which should be re�ected by f . �erefore, the closer the forecasted value is
compared to the current time interval, the better the forecasts becomes. Based on
this requirement, f is de�ned as:

f (u, t) = Pt+u × u
TN − t

+ Rt+u × (� − u
TN − t

),

where t is the current time interval, u the forecasted time interval compared to t,
Ri the real heat demand for time interval i, Pi the forecasted heat demand for time
interval i and TN the total number of time intervals.

During simulation, dependent on the deviation and the deviation threshold
(maximum allowed deviation in �), a replanning session is initiated. Multiple
deviation thresholds have been simulated: ���, ���, ��� and ���.
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Table �.�: Results all cases

Case Replanning 3σ Diversity Replanning
threshold factor sessions

ILP - 6.14 ⋅ 104 3.73
Real - 6.24 ⋅ 104 1.98 -
Real + Planning - 4.24 ⋅ 104 2.67 -
Forecasted + planning - 4.14 ⋅ 104 2.54 -
Forecasted + planning 10% 5.56 ⋅ 104 1.86 114
Forecasted + planning 15% 5.88 ⋅ 104 1.80 81
Forecasted + planning 20% 4.12 ⋅ 104 2.66 10
Forecasted + planning 25% 4.09 ⋅ 104 2.60 1

�e results of these simulations are depicted in Table �.�. As mentioned above,
the currently used planning program exploits all the scheduling freedom without
any room to cope with forecasting errors. As a result, deviation thresholds of ���
and lower resulted in a high number of replanning sessions, up to almost half of
the time intervals. �is clearly is an unusable solution.

When large forecasting errors occur, strictly following the planning using the
currently used planner causes a lot of deviations, and thus replanning. �e replan-
ning threshold should somehow meet the forecasting quality. Furthermore, the
planning program should reserve some capacity to deal with forecasting errors
locally, reducing the deviation from the planning.

In this case, proper replanning threshold values are around ���. Using this
threshold value, a low variation and still a high diversity factor can be achieved.
Furthermore, ten replanning sessions is still acceptable.

�.�.� �����������

�e ILP solution shows the available potential of adding a heat store to the system to
steer the consumption pattern of a group of houses with heat pumps. A�er a startup
e�ect, as a result of solving only a single day, a completely �at electricity pro�le can
be achieved. Although the results in Section �.�.� do not show a completely �at
pro�le, still a big improvement in the electricity pro�le is obtained. �e peaks are
decreased by ��� and the �uctuation with ���, even when using a rather naive and
straightforward planning method.

When using forecasted heat demand data in the planning, more realistic results
are obtained. Although the results di�er from the perfect forecasting case, still a
reduction of ��� in the peak demand can be obtained. Furthermore, a reduction of
��� on the �uctuations is achieved.

When using this planning method with forecasted heat demand data, the fore-
casting errors cause deviations from the planning. Dependent on the replanning
threshold, these deviations will result in a replanning session. �e replanning
threshold should match with the forecasting quality and the �exibility of the plan-
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ning determined by the planning program. It is adviced that the planning program
should reserve some capacity to deal with forecasting errors locally, reducing the
deviation from the planning.

�.� M������� ������� ��� ����

In the previous use cases the predicted heat demand data was used to steer the
electricity pro�le of a house. In the micro-CHP case, the electricity production of
the group of houses was steered, while in the heat pump use case the consumption
pattern of the �eet was steered.�e goal of this use case is to analyze the e�ects of two
di�erent types of devices, one generating electricity and the other one consuming
electricity. Since the simulated micro-CHP can only produce � kW of electricity,
while the heat pump consumes maximal � kW, the mix of the houses should balance
the production capacity with the consumption capacity. �erefore, a neighborhood
with �� houses equipped with a micro-CHP appliance and �� houses equipped
with a heat pump is simulated. Each house is equipped with a �� kWh heat store
and the heat demand of each household is again extracted from our heat demand
database. All the houses have a heat demand between the �� kWh and �� kWh.
During simulation, a time interval length of six minutes is used and the simulation
simulates �� hours.

�e objective of the global planning is to �atten the overall consumption pro�le,
just as in the heat pump use case. During planning, a perfect prediction is assumed,
since the goal of the use case is to analyze the e�ect of using a single price vector
for di�erent devices.
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Figure �.��: Electricity pro�les multiple devices
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�e electricity pro�les of the heat pump and micro-CHP appliance are depicted
in Figure �.��. Using this �gure, the e�ects of the (shared) steering vector on
each individual device can be seen. As can be seen on the �gure, the planner
tries to reduce the morning peak by lowering the peak caused by the heat pump
and increasing the production of the micro-CHP appliances during that period.
Furthermore, the micro-CHP pro�le is more �attened in the a�ernoon. �e heat
pump is less sensitive to the steering vector and does not change that much.
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(a) Demand curve
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Figure �.��: Results multiple devices case

�e electricity pro�le and load duration curve of combined energy �ow are
depicted in Figure �.��. �e load duration curves shows a more �attened line, as
desired by the overall objective. Furthermore, Figure �.��(a) nicely shows the e�ect
of the micro-CHP appliance smoothing the overall pro�le.

�.�.� �����������

In this use case, two di�erent appliances are steering with the same vector. Although
the devices have di�erent characteristics, they both respond to the shared steering
vector. However, changes in the steering vector have bigger e�ects on the micro-
CHP appliance than on the heat pump. �is is caused by the de�nitions of the cost
functions of both devices. �e cost function of the heat pump is less dependent and
therefor less sensitive to price changes. �erefore, the costs functions should be
adjusted to make them evenly sensitive to the steering vector. Another possibility is
to develop another planner, and adjust the costs functions to follow the determined
planning as good as possible, while maintaining the same level of comfort for the
residents and still properly controlling the devices. �ese adjustments are le� for
future work.
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CHAPTER�
C����������

Traditionally, most western countries supply domestic electricity demand through
generation in large central power stations, with subsequent transmission and distri-
bution through networks. Although this scheme was designed decades ago, due to
continuous monitoring and management of the physical electricity �ow and main-
tenance of the network, the current energy grid has been working very stable and
reliably. However, the increasing energy prices, environmental concerns and the
continuously increasing demand for energy require a di�erent andmore sustainable
electricity supply chain. Renewable distribution generation is a solution to reach a
more sustainable electricity production. But, due to their nature, this generation is
mostly uncontrollable. Fluctuations and imbalance caused by renewable generation
must be compensated elsewhere in the grid, which currently is handled via even
less e�cient power plants. New technology like smart appliances and demand
side load management introduces the possibility to shi� from a demand driven
supply chain into a more active, cooperative approach. In the smart grid producers,
consumers and transmission networks are continuously cooperating to ensure a
properly functioning grid. �e emergence of smartening the grid, as described in
Chapter �, and updating the electricity supply chain is emphasized by the numerous
initiatives worldwide, from the European Union, from governments, from industry
as well as from the academic world. However, to reach a smarter grid, a number of
technical, economical, legislative and ethical challenges have to be addressed. To
tackle the technical challenges, Information and Communication Technology (ICT)
is seen as one of the key enabling technologies.

A proposed control strategy for smart grids is T�����. �e goal of this control
strategy is tomanage the energy pro�les of individual devices in buildings to support
the transition towards an energy supply chain which can provide all the required
energy in a sustainable way. Since there are a lot of di�erent (future) domestic
technologies and building con�gurations, the control methodology should be able

���
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to work generically and independently of these con�gurations. Furthermore, the
methodology should be �exible such that new technologies can be added in the
future. Consequently, the control methodology needs to be very �exible and generic.
Based on the above considerations, T����� split up into a local and a global part:
�) local o�ine forecasting, �) global o�ine planning and �) local online control.
Because of scalability reasons, the global planning has a hierarchical structure and
can aggregate data and plannings on di�erent levels.

In Chapter � the �rst step, the forecasting step, is described. Via forecasts,
the �exibility of each device, called the scheduling freedom, is determined. �is
forecasting is performed up to one day ahead, to allow the exploitation of this
scheduling freedom on the day ahead market. To determine the scheduling free-
dom of individual devices, forecasts are made for each individual device. In order to
incorporate device speci�c information in a forecasting system, without the neces-
sity of communicating all required information of each device to a central location,
forecasting is performed by the local controller in each building. Using such an
approach, the requirement of a scalable (forecasting) system can be met. �e local
controller can use locally harvested data and can be programmed to forecast device
speci�c information, resulting in a �exible system. To not burden the residents with
questions about their (expected) behavior, the forecasting system should be running
completely autonomously. In the use case of individual heat demand forecasts to
determine the scheduling freedom of a micro-Combined Heat and Power (CHP)
appliance, neural network techniques are used. �e possibility of autonomous
learning of (non-linear) relations between the input- and outputdata makes neural
network techniques a good candidate. By using di�erent neural networks for each
weekday, di�erences in behavior during the week can be incorporated. By adjusting
the neural network structure, forecasts on di�erent timescales can be generated.
Furthermore, periodically evaluating the forecasting quality and, when necessary,
adjusting the input for the neural network, results in a system adaptable to change.
Via the Simulated Annealing searching algorithm, an automated search for a proper
input set and parameters for the neural network can be determined. �is yields to a
good forecasting quality.

�e forecasts are used in the second step, the planning. Based on these forecasts,
and the desired objective, a target pro�le for the group of buildings is determined. In
Chapter �, an iterative approach is given to achieve this desired pro�le. �e desired
pro�le is subsequently divided along the hierarchical structure of grid controllers.
Each grid controller is than responsible for reaching their desired pro�le. Due to
this subsequent division of the large optimization problems into subproblems via
a hierarchical structure, a fast scalable system is achieved. By choosing a proper
structure, communication requirements can be kept low.

Based on the forecasts determined at the �rst step, and the steering signals
received from a grid controller (generated in the second step), the local controllers
adjust the runtimes and/or operation modes of the devices controlled in the third
step. Since both the forecasts and planning are performed at each building, all the
required information for planning a (group of) devices is locally available. �e local
controller can use this information, and use device speci�c constrains to generate a
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planning for the device. In this approach, the available distributed computational
power available in the grid is exploited. Since less information about the device and
its environment needs to be sent outside the building, less privacy sensitive data
is exposed. Regarding the determination of the steering signals, addressing each
building individually by using di�erent steering signals gives the best results.

Since the planned schedules are based on forecasts, forecasting errors can lead to
deviations of the planning. By detecting these deviations and performing a replan-
ning, based on the actual situation and improved short term forecasts, deviations
can be minimized. Replanning can be performed on di�erent levels within the
grid, where a deviation of one building might be compensated elsewhere within
the neighborhood. If the deviation cannot be handled locally, the controller can
signal other controllers higher in the hierarchical structure.

Via various use cases, the e�ectiveness of T����� has been tested. �e freezer
use case of Chapter � and the heat pump use case in Chapter �.� show that it is
possible to �atten the consumption pro�le of a large �eet of devices. In the freezer
case, the �eet of devices consisted of consuming devices, while in the heat pump
case converting devices are used. Although the constraints of the devices were
di�erent, T����� was able to achieve a more �attened demand pro�le for both use
cases. �e constraints set by the devices limited the e�ectiveness of the steering.

�e multiple devices use case showed that when steering di�erent kinds of
devices, the sensitivity to the steering signals of both local planner should be in
balance. Although the devices have di�erent characteristics, they both respond
to the shared steering signal. However, changes in the steering signal have bigger
e�ects on the micro-CHP appliance than on the heat pump. �is is caused by the
de�nitions of the cost functions of both devices. �e cost function of the heat
pump is less dependent and therefor less sensitive to price changes. �erefore,
the costs functions should be developed such that they are evenly sensitive to the
steering signal. Another possibility is to create a planner which generates a planning,
respecting the characteristics and limitations of the device. �e costs functions
can then be extended by adding additional costs for deviating from the generated
planning.

�e Virtual Power Plant (VPP) use case shows that T����� is �exible enough to
be used for di�erent kind of objectives. Where in the above mentioned use case
a �attened pro�le was desired, the VPP required a di�erent, varying pro�le. �e
desired pro�le could not be reached perfectly, but this was caused by forecast errors
and therefore limitations on feasibility of the desired pro�le. �is can be solved by
generating a more conservative planning and introducing some reserve capacity
during planning to cope with forecast errors. Furthermore, a�er detecting the
forecasting errors, T����� o�ers opportunities via replanning to improved short
term forecasts to adapt to the actual situation.

To analyze the possibilities of T�����, a generic energy model and correspond-
ing simulation so�ware has been developed. �e energy model and simulator
provide useful tools to analyze current and future smart grid technology and their
impact on the grid. �e model’s �exibility enables the possibility to simulate the
whole energy supply chain and even future (smart) devices. �e simulator is able to
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simulate a realistic mix of devices by providing a wide variety of available devices,
with possibilities to add stochastic variation to the characteristics of the devices
and loads. By distributing the simulation over multiple machines, a large, complex
simulation can still be performed within reasonable time.

�.� C����������

Based on the results of the previous chapters, the research questions introduced in
the �rst chapter can be answered:

• What is the optimization potential of devices located in buildings/houses?
Via the presented use cases it is shown that there are quite some devices
present in the building that have �exibility on how to use them. Devices with
little direct interaction with the residents, like freezers, fridges, boilers, heat
pumps can easily adjust their consumption pro�le. Simulation shows that the
consumption pro�le of a large group of devices can be reshaped signi�cantly,
without any loss of comfort for the residents.

• How can this optimization potential be exploited?
To exploit the potential of domestic devices, the current (in�exible) consum-
ing devices should be replaced by smart devices, capable of cooperating with
other devices present in the grid. Using di�erent controllers in the grid, each
responsible for a part of the whole system, the devices can be controlled to
reach di�erent kind of objectives. Using T�����, objectives like peak shaving
or achieving an prede�ned pro�le can be reached.

• How can a control system autonomously determine the optimization potential
of devices?
�e optimization potential of devices is dependent on the class of devices,
and the amount of interaction with the devices. Based on these criteria,
di�erent in�uence factors determine the optimization potential of a device.
Via forecasts of themost important in�uence factors of a device, the �exibility
and thus optimization potential of a device can be determined. Controllers
present in the buildings have knowledge about the devices in the building
and harvest information about the residents. �is information can be used
by controllers to generate the required forecasts. Chapter � of this thesis
describes the forecasting problem, and via a simulated annealing process a
proper forecasting scheme and the resulting optimization potential for each
device can be determined autonomously.

• What is a proper control system and methodology to utilize the optimization
potential, taking the size and timing constraints of the system?
In Chapter � the hierarchical approach of T����� is described. By performing
the forecasting, planning and control steps in a hierarchical, distributed way, a
scalable solution is achieved. �is also allows optimization and coordination
on di�erent levels in the grids, each with di�erent objectives. Due to the
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used mathematical analysis and optimization techniques, the behavior of the
devices in the grid a�er steering becomes more reliable and predictable. �e
combination of high quality forecasts, exploiting the optimization potential
via planning while reserving some capacity to cope with forecast errors and
real-time control is a proper control strategy for smart grids.

Using T�����, the behavior of distributed generation, storage and consumption
technology can be adjusted to reshape the overall energy pro�le. In this thesis,
T����� has been analyzed and used to achieve global objectives and planning
strategies. Molderink [��] has analyzed the real-time control systemandpossibilities
to reach more locally focussed objectives in more depth. For both cases, it is shown
that T����� is capable of working towards the set objectives.

Summarizing, optimizing the behavior of distributed generation, storage and
consumption technologies has the potential to increase the e�ciency of conven-
tional power plants and to facilitate the introduction of large scale renewable gener-
ation. A large scale introduction of new technologies for production, consumption
and storage allows maintaining grid stability and ensures a reliable and a�ordable
supply. T����� is able to optimize the behavior of domestic devices to work towards
local and global objectives in a predictable way. We believe that T�����, with the
hierarchical tree structure of control nodes, is a good solution for a scalable, generic
and e�cient Smart Grid control strategy.

�.� R�������������� ��� ������ ����

In this work, initial results and the proof of concept of T����� are presented.
Although the results are promising, still improvements are possible.

In the �rst step, only the long term forecasts (one day in advance) are researched.
�e possibilities to perform short term forecasts, based in recent events, needs to
be researched. Using these short term forecasts, problems in reaching the desired
objective can be detected and dealt with earlier. �erefore, the results are expected
to improve. Furthermore, other forecasts than heat demand forecasts should be
investigated as well.

In the second step, on multiple level improvements can be achieved. Algo-
rithms deciding when and on which level to perform a planning and replanning
are still desired. Furthermore, algorithms to determine how many iterations of a
planning session are required can decrease the time required to execute a complete
(re)planning session and reduce the amount of communication required. A suitable
communication protocol can decrease the communication requirements even fur-
ther. On the lowest level in the hierarchical structure, more e�cient and improved
device planners can result in improved results in reaching the desired objective and
decrease the amount of time required for planning.

A�er improving each individual step of T�����, an overall system analysis
with an overview of which optimization technique, hierarchical structure, planning
algorithm etc. are suitable for which objective further mature the control strategy.
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Besides the technical improvements of T�����, other important issues like
Smart Grid economics and legislative restrictions are also very important �eld.
Although a Smart Grid may be technical feasible, economical feasibility is critical to
ensure society will adopt the Smart Grid. Our energy �ow model can be extended
to include �nancial �ows, like investment costs, energy pricing, maintenance etc.
Adding such an extension to themodel and the simulatorwill allow the simultaneous
analysis of technical and economical feasibility of Smart Grid solutions. If we can
show that Smart Grids are technically and economically feasible, with all the bene�ts
for the environment, a more sustainable energy supply chain and society can be
within hand’s reach.
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AMI Advanced Metering Infrastructure.

CCS Carbon Capture and Storage.
CHP Combined Heat and Power.
COP Coe�cient Of Performance.

DC Direct Current.
DG Distributed Generation.
DS Distributed Storage.
DSM Demand Side (Load) Management.
DSO Distribution System Operator.

GUI Graphical User Interface.

HVAC Heating, Ventilating, and Air Conditioning.
HVDC High Voltage Direct Current.

IC Integrated Communications.
ICT Information and Communication Technology.
IEA International Energy Agency.
IEEE Institute of Electrical and Electronics Engineers.
ILP Integer Linear Programming.

MAPE Mean Absolute Percentage Error.
METAR Meteorological Aerodrome Reports.
MIP Mixed Integer Problem.
MPC Model Predictive Control.
MPE Mean Percentage Error.

NIST National Institute for Standardization and Technology.

PV Photovoltaics.

RAM Random Access Memory.

���
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SA Simulated Annealing.
SCADA Supervisory Control And Data Acquisition.
SoC State of Charge.

TOU Time Of Use.
TSO Transmission System Operator.

UPS Uninterruptible Power Supply.

VPP Virtual Power Plant.
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APPENDIX A
D������ ��� �����

A.� F������ ��� ���� C������ �

In this use case, a large �eet of buildings with a smart freezer are used to analyze
the possibilities of the distributed planning algorithm. Di�erent group sizes and
planning topologies are used, but in all instances, the houses contains the same
(pseudo)random freezer.

Each freezer present in the house must maintain its internal temperature within
a certain bound, which in this case is between -��○C and -��○C. All freezers have
the three di�erent mode:

O� In the o� state, the cooling element is switched o�. Due to losses, the tempera-
ture increases slowly each time interval. �e power consumption during the
o� state is �Watt.

Cooling mode In this state, the cooling element is switched on, causing a decrease
of the internal temperature. Using this mode, a minimal internal temperature
of -��○C can be reach. �e power consumption during this state is ���Watt.

Extra cooling mode Once the internal temperature is -��○C or lower, the freezer
requiredmore power to decrease the internal temperature even further. Using
this mode, the freezer can decrease the temperature to a minimum of -��○C
at the expense of consuming more power. �is mode can be useful in case
the electricity price is expected to be higher in the future. In this state, the
power consumption is ���Watt.

In this use case, �� or ��� freezers are simulated, each with di�erent character-
istics. First, the internal temperature at the �rst time interval is pseudo-randomly

���



thesis December 19, 2011 23:28 Page 146 ☛✡✟✠

☛✡✟✠ ☛✡✟✠

☛✡✟✠

���

A
.�.

H
EAT

PU
M
P
U
SE

CA
SE

determined using the π distribution. In this distribution, the decimals of π are used.
�e start temperatures of the freezers are then determined via

T� = −�� + �.� × π i ,

where π i is the ith decimal of π and i is increased each time a value is drawn from the
π distribution. Note that π i ∈ [�, �] and that the corresponding start temperatures
thus are between [−��.�, ��.�].

�e cold loss of the freezer is determined by the insulation of the freezer, which
is di�erent for each freezer. �is loss per time interval, de�ned in ○C, is determined
via

�.� +
π i mod �

��
.

�e cooling capacity determines the e�ciency of the cooling element and
described the temperature decrease per time interval in case the freezer is cooling.
�e cooling capacity, again in ○C per time interval, is determined via

�.� +
π i mod �

��
.

�.�.� ������������ ����������� ������

In the replanning use case, pseudo random timestamps when an interaction with
the freezer occurs is simulation. �e result of this interaction is a increase of the
internal temperature of the freezer, and this increase is also pseudorandomly picked.

A pseudorandom timestamp is determined by selecting a time interval in which
this interaction occurs using

�� + (π i mod �) × ��)
���

× TN,

where TN is the total number of time intervals. �e interaction thus occurs some-
where in in time interval �� and ���, which is between �:��h and ��:��h. �e
temperate increase (in ○C) during this interval is determined via � × π i

�� , resulting
in a temperate increase between [�.�, �.�]○C.

A.� H��� ���� ��� ����

In this use case, ��� houses equipped with a heat pump and �� kWh heat store are
simulated. Each heat store is initially ��� �lled.

�e heat pumps have �ve modulation modes and a maximum electricity con-
sumption of � kW.�e modulation modes are divided evenly over the maximum
electricity consumption, resulting in the following six heat production modes: �W,
���W, ���W, ����W, ����W and ����W. For Coe�cient Of Performance (COP),
a value of �.� is chosen. As we assume that the electrical loss can be fully recycled,
an e�ective COP of �.� is attained, a value representative for current soil-water heat
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pump systems. �erefore, between �W and ����Wof heat can be produced by
the heat pump.

�e real heat demand (Dr) and predicted heat demand (Dp) data is given in
the table below. For each house number, the total real and predicted heat demand
(in kWh) is given. To give some insight how this heat demand is distributed over
time and how well the predictions are, small demand pro�les are given. �e black
lines are the real heat demand pro�les, the grey ones the forecasted pro�les. To save
space, no ticks and labels have been drawn in these graphs. In the graphs, for each
time interval (horizontal axis) the heat demand for that time interval (vertical axis)
is depicted. �e minimum value on the vertical axis is �, the maximum value is
����� . �e unit of the heat demand is kWτ, where τ is the interval length, which
in this simulation is six minutes.

H P Dr Dp H P Dr Dp

� ��.� ��.� �� ��.� ��.�

� ��.� ��.� �� ��.� ��.�

� ��.� ��.� �� ��.� ��.�

� ��.� ��.� �� ��.� ��.�

� ��.� ��.� �� ��.� ��.�

� ��.� ��.� �� ��.� ��.�

� ��.� ��.� �� ��.� ��.�

� ��.� ��.� �� ��.� ��.�

� ��.� ��.� �� ��.� ��.�

�� ��.� ��.� �� ��.� ��.�

�� ��.� ��.� �� ��.� ��.�

�� ��.� ��.� �� ��.� ��.�

�� ��.� ��.� �� ��.� ��.�

�� ��.� ��.� �� ��.� ��.�

�� ��.� ��.� �� ��.� ��.�

�� ��.� ��.� �� ��.� ��.�

�� ��.� ��.� �� ��.� ��.�

�� ��.� ��.� �� ��.� ��.�

�� ��.� ��.� �� ��.� ��.�

�� ��.� ��.� �� ��.� ��.�

�� ��.� ��.� �� ��.� ��.�
Continued on next page
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